Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 12: 771940, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899326

RESUMO

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia in clinical setting. Its pathogenesis was associated with metabolic disorder, especially defective fatty acids oxidation (FAO). However, whether promoting FAO could prevent AF occurrence and development remains elusive. In this study, we established a mouse model of obesity-related AF through high-fat diet (HFD) feeding, and used l-carnitine (LCA, 150 mg/kg⋅BW/d), an endogenous cofactor of carnitine palmitoyl-transferase-1B (CPT1B; the rate-limiting enzyme of FAO) to investigate whether FAO promotion can attenuate the AF susceptibility in obesity. All mice underwent electrophysiological assessment for atrial vulnerability, and echocardiography, histology and molecular evaluation for AF substrates and underlying mechanisms, which were further validated by pharmacological experiments in vitro. HFD-induced obese mice increased AF vulnerability and exhibited apparent atrial structural remodeling, including left atrial dilation, cardiomyocyte hypertrophy, connexin-43 remodeling and fibrosis. Pathologically, HFD apparently leads to defective cardiac FAO and subsequent lipotoxicity, thereby evoking a set of pathological reactions including oxidative stress, DNA damage, inflammation, and insulin resistance. Enhancing FAO via LCA attenuated lipotoxicity and lipotoxicity-induced pathological changes in the atria of obese mice, resulting in restored structural remodeling and ameliorated AF susceptibility. Mechanistically, LCA activated AMPK/PGC1α signaling both in vivo and in vitro, and pharmacological inhibition of AMPK via Compound C attenuated LCA-induced cardio-protection in palmitate-treated primary atrial cardiomyocytes. Taken together, our results demonstrated that FAO promotion via LCA attenuated obesity-mediated AF and structural remodeling by activating AMPK signaling and alleviating atrial lipotoxicity. Thus, enhancing FAO may be a potential therapeutic target for AF.

2.
Cell Death Dis ; 12(9): 813, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34453039

RESUMO

Atrial fibrillation (AF) is an increasingly prevalent arrhythmia with significant health and socioeconomic impact. The underlying mechanism of AF is still not well understood. In this study, we sought to identify hub genes involved in AF, and explored their functions and underlying mechanisms based on bioinformatics analysis. Five microarray datasets in GEO were used to identify the differentially expressed genes (DEGs) by Robust Rank Aggregation (RRA), and hub genes were screened out using protein-protein interaction (PPI) network. AF model was established using a mixture of acetylcholine and calcium chloride (Ach-CaCl2) by tail vein injection. We totally got 35 robust DEGs that mainly involve in extracellular matrix formation, leukocyte transendothelial migration, and chemokine signaling pathway. Among these DEGs, we identified three hub genes involved in AF, of which CXCL12/CXCR4 axis significantly upregulated in AF patients stands out as one of the most potent targets for AF prevention, and its effect on AF pathogenesis and underlying mechanisms were investigated in vivo subsequently with the specific CXCR4 antagonist AMD3100 (6 mg/kg). Our results demonstrated an elevated transcription and translation of CXCL12/CXCR4 axis in AF patients and mice, accompanied with the anabatic atrial inflammation and fibrosis, thereby providing the substrate for AF maintenance. Blocking its signaling via AMD3100 administration in AF model mice reduced AF inducibility and duration, partly ascribed to decreased atrial inflammation and structural remodeling. Mechanistically, these effects were achieved by reducing the recruitment of CD3+ T lymphocytes and F4/80+ macrophages, and suppressing the hyperactivation of ERK1/2 and AKT/mTOR signaling in atria of AF model mice. In conclusion, this study provides new evidence that antagonizing CXCR4 prevents the development of AF, and suggests that CXCL12/CXCR4 axis may be a potential therapeutic target for AF.


Assuntos
Fibrilação Atrial/metabolismo , Quimiocina CXCL12/metabolismo , Receptores CXCR4/metabolismo , Transdução de Sinais , Animais , Fibrilação Atrial/diagnóstico por imagem , Fibrilação Atrial/genética , Fibrilação Atrial/fisiopatologia , Benzilaminas/administração & dosagem , Benzilaminas/farmacologia , Estudos de Casos e Controles , Biologia Computacional , Ciclamos/administração & dosagem , Ciclamos/farmacologia , Bases de Dados Genéticas , Modelos Animais de Doenças , Eletrocardiografia , Fibrose , Perfilação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Átrios do Coração/efeitos dos fármacos , Átrios do Coração/patologia , Átrios do Coração/fisiopatologia , Humanos , Inflamação/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Remodelação Vascular/efeitos dos fármacos
3.
J Cell Mol Med ; 25(17): 8363-8375, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34288408

RESUMO

Necroptosis, a novel programmed cell death, plays a critical role in the development of fibrosis, yet its role in atrial fibrillation (AF) remains elusive. Mounting evidence demonstrates that aerobic exercise improves AF-related symptoms and quality of life. Therefore, we explored the role of necroptosis in AF pathogenesis and exercise-conferred cardioprotection. A mouse AF model was established either by calcium chloride and acetylcholine (CaCl2 -Ach) administration for 3 weeks or high-fat diet (HFD) feeding for 12 weeks, whereas swim training was conducted 60 min/day, for 3-week duration. AF susceptibility, heart morphology and function and atrial fibrosis were assessed by electrophysiological examinations, echocardiography and Masson's trichrome staining, respectively. Both CaCl2 -Ach administration and HFD feeding significantly enhanced AF susceptibility (including frequency and duration of episodes), left atrial enlargement and fibrosis. Moreover, protein levels of necroptotic signaling (receptor-interacting protein kinase 1, receptor-interacting protein kinase 3, mixed lineage kinase domain-like protein and calcium/calmodulin-dependent protein kinase II or their phosphorylated forms) were markedly elevated in the atria of AF mice. However, inhibiting necroptosis with necrostatin-1 partly attenuated CaCl2 -Ach (or HFD)-induced fibrosis and AF susceptibility, implicating necroptosis as contributing to AF pathogenesis. Finally, we found 3-week swim training inhibited necroptotic signaling, consequently decreasing CaCl2 -Ach-induced AF susceptibility and atrial structural remodeling. Our findings identify necroptosis as a novel mechanism in AF pathogenesis and highlight that aerobic exercise may confer benefits on AF via inhibiting cardiac necroptosis.


Assuntos
Fibrilação Atrial/fisiopatologia , Remodelamento Atrial , Necroptose , Condicionamento Físico Animal , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
4.
Pacing Clin Electrophysiol ; 44(11): 1817-1823, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33973650

RESUMO

BACKGROUND: It remains uncertain whether low-level electrical stimulation (LL-ES) of the ventricular ganglionated plexi (GP) improves heart function. This study investigated the anti-arrhythmic and anti-heart failure effects of LL-ES of the aortic root ventricular GP (ARVGP). METHODS: Thirty dogs were divided randomly into control, drug, and LL-ES groups after performing rapid right ventricular pacing to establish a heart failure (HF) model. The inducing rate of arrhythmia; levels of bioactive factors influencing HF, including angiotensin II type I receptor (AT-1R), transforming growth factor-beta (TGF-ß), matrix metalloproteinase (MMP), and phosphorylated extracellular signal-regulated kinase (p-ERK1/2); left ventricular stroke volume (LVSV), and left ventricular ejection fraction (LVEF)were measured after treatment with placebo, drugs, and LL-ES. RESULTS: The inducing rate of atrial arrhythmia decreased from 60% in the control group to 50% in the drug group and 10% in the LL-ES group (p = .033 vs. drug group) after 1 week of treatment. The ventricular effective refractory period was prolonged from 139 ± 8 ms in the drug group to 166 ± 13 ms in the LL-ES group (p = .001). Compared to the drug group, the expressions of AT-1R, TGF-ß, and MMP proteins were down-regulated in the LL-ES group, whereas that of p-ERK1/2 was significantly increased (all p = .001). Moreover, in the LL-ES group, LVSV increased markedly from 13.16 ± 0.22 to 16.86 ± 0.27 mL, relative to that in the drug group (p = .001), and LVEF increased significantly from 38.48% ± 0.53% to 48.94% ± 0.57% during the same time frame (p = .001). CONCLUSION: Short-term LL-ES of ARVGP had both anti-arrhythmic and anti-inflammatory effects and contributed to the treatment of tachycardia-induced HF and its associated arrhythmia.


Assuntos
Arritmias Cardíacas/prevenção & controle , Estimulação Elétrica , Gânglios Autônomos/fisiologia , Átrios do Coração/fisiopatologia , Insuficiência Cardíaca/prevenção & controle , Ventrículos do Coração/inervação , Ventrículos do Coração/fisiopatologia , Animais , Arritmias Cardíacas/fisiopatologia , Biomarcadores/sangue , Modelos Animais de Doenças , Cães , Insuficiência Cardíaca/fisiopatologia , Volume Sistólico
5.
Front Cardiovasc Med ; 8: 630399, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33834042

RESUMO

Cardiac pacing is an effective therapy for treating patients with bradycardia due to sinus node dysfunction or atrioventricular block. However, traditional right ventricular apical pacing (RVAP) causes electric and mechanical dyssynchrony, which is associated with increased risk for atrial arrhythmias and heart failure. Therefore, there is a need to develop a physiological pacing approach that activates the normal cardiac conduction and provides synchronized contraction of ventricles. Although His bundle pacing (HBP) has been widely used as a physiological pacing modality, it is limited by challenging implantation technique, unsatisfactory success rate in patients with wide QRS wave, high pacing capture threshold, and early battery depletion. Recently, the left bundle branch pacing (LBBP), defined as the capture of left bundle branch (LBB) via transventricular septal approach, has emerged as a newly physiological pacing modality. Results from early clinical studies have demonstrated LBBP's feasibility and safety, with rare complications and high success rate. Overall, this approach has been found to provide physiological pacing that guarantees electrical synchrony of the left ventricle with low pacing threshold. This was previously specifically characterized by narrow paced QRS duration, large R waves, fast synchronized left ventricular activation, and correction of left bundle branch block. Therefore, LBBP may be a potential alternative pacing modality for both RVAP and cardiac resynchronization therapy with HBP or biventricular pacing (BVP). However, the technique's widespread adaptation needs further validation to ascertain its safety and efficacy in randomized clinical trials. In this review, we discuss the current knowledge of LBBP.

6.
World J Gastroenterol ; 25(40): 6077-6093, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31686764

RESUMO

BACKGROUND: Central sensitization plays a pivotal role in the maintenance of chronic pain induced by chronic pancreatitis (CP). We hypothesized that the nucleus tractus solitarius (NTS), a primary central site that integrates pancreatic afferents apart from the thoracic spinal dorsal horn, plays a key role in the pathogenesis of visceral hypersensitivity in a rat model of CP. AIM: To investigate the role of the NTS in the visceral hypersensitivity induced by chronic pancreatitis. METHODS: CP was induced by the intraductal injection of trinitrobenzene sulfonic acid (TNBS) in rats. Pancreatic hyperalgesia was assessed by referred somatic pain via von Frey filament assay. Neural activation of the NTS was indicated by immunohistochemical staining for Fos. Basic synaptic transmission within the NTS was assessed by electrophysiological recordings. Expression of vesicular glutamate transporters (VGluTs), N-methyl-D-aspartate receptor subtype 2B (NR2B), and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subtype 1 (GluR1) was analyzed by immunoblotting. Membrane insertion of NR2B and GluR1 was evaluated by electron microscopy. The regulatory role of the NTS in visceral hypersensitivity was detected via pharmacological approach and chemogenetics in CP rats. RESULTS: TNBS treatment significantly increased the number of Fos-expressing neurons within the caudal NTS. The excitatory synaptic transmission was substantially potentiated within the caudal NTS in CP rats (frequency: 5.87 ± 1.12 Hz in CP rats vs 2.55 ± 0.44 Hz in sham rats, P < 0.01; amplitude: 19.60 ± 1.39 pA in CP rats vs 14.71 ± 1.07 pA in sham rats; P < 0.01). CP rats showed upregulated expression of VGluT2, and increased phosphorylation and postsynaptic trafficking of NR2B and GluR1 within the caudal NTS. Blocking excitatory synaptic transmission via the AMPAR antagonist CNQX and the NMDAR antagonist AP-5 microinjection reversed visceral hypersensitivity in CP rats (abdominal withdraw threshold: 7.00 ± 1.02 g in CNQX group, 8.00 ± 0.81 g in AP-5 group and 1.10 ± 0.27 g in saline group, P < 0.001). Inhibiting the excitability of NTS neurons via chemogenetics also significantly attenuated pancreatic hyperalgesia (abdominal withdraw threshold: 13.67 ± 2.55 g in Gi group, 2.00 ± 1.37 g in Gq group, and 2.36 ± 0.67 g in mCherry group, P < 0.01). CONCLUSION: Our findings suggest that enhanced excitatory transmission within the caudal NTS contributes to pancreatic pain and emphasize the NTS as a pivotal hub for the processing of pancreatic afferents, which provide novel insights into the central sensitization of painful CP.


Assuntos
Dor Crônica/fisiopatologia , Sistema Nervoso Entérico/fisiopatologia , Hiperalgesia/fisiopatologia , Pancreatite Crônica/complicações , Núcleo Solitário/fisiopatologia , Vias Aferentes/fisiopatologia , Animais , Dor Crônica/etiologia , Modelos Animais de Doenças , Humanos , Hiperalgesia/etiologia , Masculino , Neurônios/fisiologia , Pâncreas/inervação , Pancreatite Crônica/induzido quimicamente , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Núcleo Solitário/citologia , Técnicas Estereotáxicas , Transmissão Sináptica/fisiologia , Ácido Trinitrobenzenossulfônico/toxicidade
7.
Mol Brain ; 12(1): 76, 2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31484535

RESUMO

Central sensitization plays a pivotal role in the maintenance of chronic pain induced by chronic pancreatitis (CP), but cortical modulation of painful CP remains elusive. This study was designed to examine the role of anterior insular cortex (aIC) in the pathogenesis of hyperalgesia in a rat model of CP. CP was induced by intraductal administration of trinitrobenzene sulfonic acid (TNBS). Abdomen hyperalgesia and anxiety were assessed by von Frey filament and open field tests, respectively. Two weeks after surgery, the activation of aIC was indicated by FOS immunohistochemical staining and electrophysiological recordings. Expressions of VGluT1, NMDAR subunit NR2B and AMPAR subunit GluR1 were analyzed by immunoblottings. The regulatory roles of aIC in hyperalgesia and pain-related anxiety were detected via pharmacological approach and chemogenetics in CP rats. Our results showed that TNBS treatment resulted in long-term hyperalgesia and anxiety-like behavior in rats. CP rats exhibited increased FOS expression and potentiated excitatory synaptic transmission within aIC. CP rats also showed up-regulated expression of VGluT1, and increased membrane trafficking and phosphorylation of NR2B and GluR1 within aIC. Blocking excitatory synaptic transmission significantly attenuated abdomen mechanical hyperalgesia. Specifically inhibiting the excitability of insular pyramidal cells reduced both abdomen hyperalgesia and pain-related anxiety. In conclusion, our findings emphasize a key role for aIC in hyperalgesia and anxiety of painful CP, providing a novel insight into cortical modulation of painful CP and shedding light on aIC as a potential target for neuromodulation interventions in the treatment of CP.


Assuntos
Córtex Cerebral/patologia , Hiperalgesia/etiologia , Hiperalgesia/patologia , Pancreatite Crônica/complicações , Pancreatite Crônica/patologia , Abdome/patologia , Animais , Ansiedade/complicações , Ansiedade/patologia , Ansiedade/fisiopatologia , Comportamento Animal , Membrana Celular/metabolismo , Córtex Cerebral/fisiopatologia , Ácido Glutâmico/metabolismo , Hiperalgesia/fisiopatologia , Hipersensibilidade/complicações , Hipersensibilidade/patologia , Potenciação de Longa Duração , Masculino , Neurotransmissores/metabolismo , Pancreatite Crônica/fisiopatologia , Fosforilação , Terminações Pré-Sinápticas/metabolismo , Subunidades Proteicas/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Células Piramidais/metabolismo , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica , Ácido Trinitrobenzenossulfônico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...