Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(30): 11231-11240, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37467161

RESUMO

Current methods for evaluating catalytic degradation reactions of environmental pollutants primarily rely on chromatography that often suffers from intermittent analysis, a long turnaround period, and complex sample pretreatment. Herein, we propose a quantitative time-resolved visualization method to evaluate the progress of catalytic degradation reactions by integrating sample pretreatment [single-drop microextraction, (SDME)], fluorescence sensing, and a smartphone detection platform. The dechlorination reaction of chlorobenzene derivatives was first investigated to validate the feasibility of this approach, in which SDME plays a critical role in direct sample pretreatment, and inorganic CsPbBr3 perovskite encapsulated in a metal-organic framework (MOF-5) was utilized as the fluorescent chromogenic agent (FLCA) in SDME to realize fast in situ colorimetric detection via the color switching from green (CsPbBr3) to blue (chlorine lead bromide, inorganic CsPbCl3 perovskite). The smartphone, which can calculate the B/G value of FLCA, serves as a data output window for quantitative time-resolved visualization. Further, a [Eu(PMA)]n (PMA= pyromellitic acid) fluorescent probe was constructed to use as an FLCA for the in situ evaluation of cinnamaldehyde and p-nitrophenol catalytic reduction. This approach not only minimizes the utilization of organic solvents and achieves quantitively efficient time-resolved visualization but also provides a feasible method for in situ monitoring of the progress of catalytic degradation reactions.


Assuntos
Poluentes Ambientais , Fluorescência , Óxidos , Solventes
2.
Chemistry ; 27(34): 8694-8697, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-33938064

RESUMO

Soft template designing is the most promising strategy for the synthesis of zeolite nanosheets. MFI nanosheets directed by soft templates (containing long-chain alkyl groups or aromatic groups as hydrophobic component) can be found frequently; however, so far, MFI nanosheets synthesized by soft templates with aromatic heterocycle groups (e. g., s-triazine groups) are rare. Herein, a nanosheet-stacked hierarchical MFI zeolite (NSHM) has been synthesized by using a triply branched s-triazine-based surfactant as a bifunctional organic structure-directing agent. On the basis of a geometrical match relationship, a formation model has been proposed. Synthesized NSHM had abundant mesopores stacked by nanosheets and exhibited a high surface area (430 m2 ⋅ g-1 ). The 1 wt% Pd/NSHM attained a significant increase in yield of cyclohexanol/cyclohexanone mixture (from 66 to 85 %) in the oxidation of cyclohexane compared with Silicalite-1 and SBA-15 as supports.

3.
Environ Pollut ; 267: 115487, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33254613

RESUMO

In order to cope with the global energy crisis and environmental pollution problems, there are urgent needs for clean energy such as biomass-derived hydrogen. CaO is effective to promote hydrogen production from biomass gasification due to its high capacity of in-situ CO2 capture. In this work, a two-stage fixed bed reactor was used to produce hydrogen by catalytic conversion of biomass with and without in-situ CO2 capture. In addition, three Ni loadings (5 wt%, 10 wt%, and 20 wt%) supported by Al2O3 and sol-gel CaO have been prepared and tested. The BET analysis shows the surface area of the catalysts increases first and then decreases with the increase of Ni loading. Results from high-resolution transmission electron microscopy (HRTEM) images reveals that NiO particles are well distributed over the porous CaO. The X-ray diffraction (XRD) analysis indicates the NiO nanocrystalline size is increased with increasing Ni loading on Ni/Al2O3, and the most homogeneous dispersion was shown by 10 wt% Ni/CaO. Around 666 mgCO2/gCaO of CO2 adsorption capacity and 850 min stability were obtained using the sol-gel CaO sorbent. Compared to the reference Ni/Al2O3 catalysts, the resistance of carbon deposition on the Ni/CaO results in a lower coke deposition, which is attributed to the basicity of the catalysts. In addition, the increase of loading promotes the decomposition of biomass-derived oxygenated compounds. Much more hydrogen is obtained using the Ni/CaO catalysts compared with Ni/Al2O3 due to in-situ CO2 capture. However, the sintering and particle agglomeration using the 20 wt% Ni-catalyst might be responsible for the reduction of hydrogen production. The highest H2 concentration of 19.32 vol% at 424 °C was obtained when the 10 wt% Ni/CaO catalyst was used.


Assuntos
Dióxido de Carbono , Hidrogênio , Adsorção , Biomassa , Catálise
5.
Environ Sci Technol ; 53(15): 9298-9305, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31241318

RESUMO

Biomass gasification is regarded as a promising alternative to fossil fuels for producing sustainable and clean value-added products. However, the challenges including low energy efficiency, CO2 emission, and ash agglomeration significantly delay the deployment of the technology. Herein, we first proposed a novel autothermal CaO looping biomass gasification (Auto-CaL-Gas) technology, in which CaO-based materials react with flue gas with a high concentration of CO2 (>30 vol %) to produce heat inside the gasifier, simultaneously providing energy for low-temperature biomass gasification using CO2 as a gasification agent. Upon use of this concept the syngas production exhibited a significant increase from 0.21 kg/h to 0.90 kg/h in the Aspen simulation results and more than 3-fold improvement in the experimental results.


Assuntos
Combustíveis Fósseis , Gases , Biomassa , Temperatura Alta
6.
ACS Appl Mater Interfaces ; 9(37): 31699-31709, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28862429

RESUMO

A novel sandwich-like composite with ultrathin CoAl-layered double hydroxide (LDH) nanoplates electrostatically assembled on both sides of two-dimensional polypyrrole/graphene (PG) substrate has been successfully fabricated using facile hydrothermal techniques. The PG not only serves as an excellent conductive and structural scaffold to enhance the transmission of electrons and prevent aggregation of CoAl-LDH nanoplates but also contributes to the enhancement of the specific capacitance. Owing to the homogeneous dispersion of CoAl-LDH nanoplates and its intimate interaction with PG substrate, the resulting CoAl-LDH/PG nanocomposite material exhibits excellent capacitive performance, for example, enhanced gravimetric specific capacitance (864 F g-1 at 1 A g-1 ), high rate performance (75% retention at 20 A g-1), and excellent cycle life (almost no degradation in supercapacitor performance after 5000 cycles) in aqueous KOH solution. Furthermore, the assembled asymmetric capacitor is able to deliver a superhigh energy density of 46.8 Wh kg-1 at 1.2 kW kg-1 and maintain 90.1% of its initial capacitance after 10 000 cycles. These results indicate a rational assembly strategy toward a high-performance pseudocapacitive electrode material with excellent rate performance, high specific capacitance, and outstanding cycle stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...