Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 328
Filtrar
1.
Alzheimers Dement ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934107

RESUMO

INTRODUCTION: Impaired brain protein synthesis, synaptic plasticity, and memory are major hallmarks of Alzheimer's disease (AD). The ketamine metabolite (2R,6R)-hydroxynorketamine (HNK) has been shown to modulate protein synthesis, but its effects on memory in AD models remain elusive. METHODS: We investigated the effects of HNK on hippocampal protein synthesis, long-term potentiation (LTP), and memory in AD mouse models. RESULTS: HNK activated extracellular signal-regulated kinase 1/2 (ERK1/2), mechanistic target of rapamycin (mTOR), and p70S6 kinase 1 (S6K1)/ribosomal protein S6 signaling pathways. Treatment with HNK rescued hippocampal LTP and memory deficits in amyloid-ß oligomers (AßO)-infused mice in an ERK1/2-dependent manner. Treatment with HNK further corrected aberrant transcription, LTP and memory in aged APP/PS1 mice. DISCUSSION: Our findings demonstrate that HNK induces signaling and transcriptional responses that correct synaptic and memory deficits in AD mice. These results raise the prospect that HNK could serve as a therapeutic approach in AD. HIGHLIGHTS: The ketamine metabolite HNK activates hippocampal ERK/mTOR/S6 signaling pathways. HNK corrects hippocampal synaptic and memory defects in two mouse models of AD. Rescue of synaptic and memory impairments by HNK depends on ERK signaling. HNK corrects aberrant transcriptional signatures in APP/PS1 mice.

2.
Pediatrics ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832449

RESUMO

OBJECTIVE: With this study, we aimed to estimate the disease burden attributable to child and maternal malnutrition (CMM) throughout the world between 1990 and 2019. METHODS: The number, age-standardized rate, population attributable fraction of deaths, disability-adjusted life-years, years of life lost, and years lived with disability associated with CMM were estimated using the Global Burden of Disease Study 2019 by age, sex, year, location, and sociodemographic index at the global level. The slope index of inequality and concentration index were employed to measure socioeconomic-related health inequalities across countries. RESULTS: The number (million) of global deaths, disability-adjusted life-years, and years of life lost related to CMM were 2.9, 294.8, and 250.5 in 2019, showing decreases of 60.8, 57.4, and 60.7% since 1990. However, the number of years lived with CMM-related disability increased from 36.0 in 1990 to 44.3 in 2019. Additionally, the age-standardized rates of these 4 indicators showed varying degrees of decline. The global burden of CMM-related conditions differed with age and sex. The burden was the heaviest in western sub-Saharan Africa, especially in Chad. In terms of diseases, neonatal disorders represented the most significant burden attributed to CMM. Additionally, the CMM burden was more concentrated in regions with low sociodemographic indices, shown by the slope index of inequality and concentration index. CONCLUSIONS: The findings of this study highlight the ongoing global burden of CMM, particularly in terms of years lived with disability. Population-wide actions targeting the effective treatment and relief of CMM may reduce the CMM-related disease burden.

3.
Psychol Rep ; : 332941241258922, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842056

RESUMO

This study investigated gender differences in health-risk behaviour patterns among young adults and assessed the associations of anxiety and depression with these patterns. A cross-sectional survey was conducted with 1740 young Chinese adults aged 18-24 years. Latent class analysis (LCA) and multinomial logistic regression were conducted to identify the clusters of health-risk behaviours and their associations with anxiety and depression. Three common patterns were found for both genders: physical inactivity, substance use, and insufficient fruit intake (5.7% for males [M] and 11.6% for females [F]); a sedentary lifestyle only (48.4% for M and 48.9% for F); and a sedentary lifestyle, substance use, and an unhealthy diet (7.6% for M and 20.0% for F). Additionally, two additional unique patterns were found: physical inactivity and unhealthy diet in males (38.3%) and physical inactivity and insufficient fruit intake in females (19.6%). Sociodemographic variables exert different effects on health-risk behaviour patterns as a function of gender. Lower anxiety levels (odds ratio [OR]: 0.892; 95% confidence interval [CI]: 0.823-0.966) and greater depression levels (OR: 1.074; 95% CI: 1.008-1.143) were associated with a sedentary lifestyle, substance use, and unhealthy diet class only in female young adults compared with a sedentary-only class. These findings underscore the need for the implementation of targeted interventions based on gender differences.

4.
Food Chem ; 455: 139857, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38823141

RESUMO

Melatonin acts as a potential regulator of cadmium (Cd) tolerance in rice. However, its practical value in rice production remains unclear. To validate the hypothesis that melatonin affects Cd accumulation and rice quality, a series of experiments were conducted. The results showed that exogenous melatonin application was associated with reduced Cd accumulation (23-43%) in brown rice. Fourier transform infrared spectroscopy (FTIR) analysis showed that exogenous melatonin affected the rice protein secondary structure and starch short-range structure. Metabolomics based on LC-MS/MS revealed that exogenous melatonin altered the brown rice metabolic profile, decreased fatty acid metabolite content, but increased amino acid metabolite, citric acid, melatonin biosynthetic metabolite, and plant hormone contents. These findings indicate that exogenous melatonin can effectively reduced Cd accumulation and improve rice quality through metabolic network regulation, serving as an effective treatment for rice cultivated in Cd-contaminated soil.

5.
Geriatr Nurs ; 58: 361-367, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38875762

RESUMO

OBJECTIVES: Cardiometabolic diseases (CMDs) have been individually associated with fall-related outcomes, but their combined effect on fear of falling (FOF) has not been investigated. This study aims to examine the association between cardiometabolic multimorbidity and FOF in older adults. METHODS: Data from the National Health and Aging Trends Study, 4,295 community-dwelling older adults ≥ 65 years were analyzed in this longitudinal study. CMDs were assessed at baseline, including heart disease, diabetes, stroke, and hypertension. FOF was evaluated by asking participants if they worried about falling in the past month. Data were analyzed using multi-adjusted logistic regression. RESULTS: Cardiometabolic multimorbidity was associated with a higher risk of FOF. The combination of heart disease and diabetes showed the highest risk of FOF (OR = 3.47, 95 % CI: 1.63-7.40). CONCLUSIONS: These findings underscore the need for targeted interventions to mitigate the combined impact of cardiometabolic multimorbidity on FOF in older adults.

6.
Adv Mater ; : e2402156, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869191

RESUMO

Producing green hydrogen in a cost-competitive manner via water electrolysis will make the long-held dream of hydrogen economy a reality. Although platinum (Pt)-based catalysts show good performance toward hydrogen evolution reaction (HER), the high cost and scarce abundance challenge their economic viability and sustainability. Here, a non-Pt, high-performance electrocatalyst for HER achieved by engineering high fractions of stacking fault (SF) defects for MoNi4/MoO2 nanosheets (d-MoNi) through a combined chemical and thermal reduction strategy is shown. The d-MoNi catalyst offers ultralow overpotentials of 78 and 121 mV for HER at current densities of 500 and 1000 mA cm-2 in 1 M KOH, respectively. The defect-rich d-MoNi exhibits four times higher turnover frequency than the benchmark 20% Pt/C, together with its excellent durability (> 100 h), making it one of the best-performing non-Pt catalysts for HER. The experimental and theoretical results reveal that the abundant SFs in d-MoNi induce a compressive strain, decreasing the proton adsorption energy and promoting the associated combination of *H into hydrogen and molecular hydrogen desorption, enhancing the HER performance. This work provides a new synthetic route to engineer defective metal and metal alloy electrocatalysts for emerging electrochemical energy conversion and storage applications.

7.
Forensic Sci Int Genet ; 72: 103078, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38889491

RESUMO

DNA mixtures are a common sample type in forensic genetics, and we typically assume that contributors to the mixture are unrelated when calculating the likelihood ratio (LR). However, scenarios involving mixtures with related contributors, such as in family murder or incest cases, can also be encountered. Compared to the mixtures with unrelated contributors, the kinship within the mixture would bring additional challenges for the inference of the number of contributors (NOC) and the construction of probabilistic genotyping models. To evaluate the influence of potential kinship on the individual identification of the person of interest (POI), we conducted simulations of two-person (2 P) and three-person (3 P) DNA mixtures containing unrelated or related contributors (parent-child, full-sibling, and uncle-nephew) at different mixing ratios (for 2 P: 1:1, 4:1, 9:1, and 19:1; for 3 P: 1:1:1, 2:1:1, 5:4:1, and 10:5:1), and performed massively parallel sequencing (MPS) using MGIEasy Signature Identification Library Prep Kit on MGI platform. In addition, in silico simulations of mixtures with unrelated and related contributors were also performed. In this study, we evaluated 1): the MPS performance; 2) the influence of multiple genetic markers on determining the presence of related contributors and inferring the NOC within the mixture; 3) the probability distribution of MAC (maximum allele count) and TAC (total allele count) based on in silico mixture profiles; 4) trends in LR values with and without considering kinship in mixtures with related and unrelated contributors; 5) trends in LR values with length- and sequence-based STR genotypes. Results indicated that multiple numbers and types of genetic markers positively influenced kinship and NOC inference in a mixture. The LR values of POI were strongly dependent on the mixing ratio. Non- and correct-kinship hypotheses essentially did not affect the individual identification of the major POI; the correct kinship hypothesis yielded more conservative LR values; the incorrect kinship hypothesis did not necessarily lead to the failure of POI individual identification. However, it is noteworthy that these considerations could lead to uncertain outcomes in the identification of minor contributors. Compared to length-based STR genotyping, using sequence-based STR genotype increases the individual identification power of the POI, concurrently improving the accuracy of mixing ratio inference using EuroForMix. In conclusion, the MGIEasy Signature Identification Library Prep kit demonstrated robust individual identification power, which is a viable MPS panel for forensic DNA mixture interpretations, whether involving unrelated or related contributors.

8.
Biosensors (Basel) ; 14(6)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38920583

RESUMO

As a typical biomarker of Alzheimer's disease, rapid and specific detection of tau protein can help improve the early diagnosis and prognosis of the disease. In this study, a simple sandwich electrochemical immunosensor was developed for rapid detection of tau protein. Primary monoclonal antibodies (mAb1) against the middle domain of tau protein (amino acids 189-195) were immobilized on the gold electrode surface through a self-assembled monolayer (SAM) of 3,3'-dithiobis (sulfosuccinimidyl propionate) (DTSSP). Then the tau protein was captured through the specific adsorption between the antigen and the antibody, resulting in a change in the impedance. Secondary monoclonal antibodies (mAb2) against the N-terminal region of tau protein were used for further amplification of the binding reaction between mAb1 and tau protein. A linear correlation between the total change in impedance and the logarithm of tau concentration was found from 2 × 10-6 mg mL-1 to 2 × 10-3 mg mL-1, with a detection limit as low as 1 × 10-6 mg mL-1. No significant interference was observed from human serum albumin. Furthermore, the fabricated sandwich immunosensor successfully detected target tau protein in artificial cerebrospinal fluid (aCSF) samples, indicating good potential for clinical applications in the future.


Assuntos
Doença de Alzheimer , Biomarcadores , Técnicas Biossensoriais , Técnicas Eletroquímicas , Proteínas tau , Doença de Alzheimer/diagnóstico , Humanos , Anticorpos Monoclonais , Ouro/química , Imunoensaio/métodos , Limite de Detecção , Eletrodos
9.
Front Vet Sci ; 11: 1364287, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38751803

RESUMO

An artificial semisynthetic material can be derived from artemisinin (ART) called dihydroartemisinin (DHA). Although DHA has enhanced antigiardial potential, its clinical application is limited because of its poor selectivity and low solubility. The drug's absorption has a direct impact on the cell, and mechanism research is limited to its destruction of the cytoskeleton. In this study, we used the zeolitic imidazolate framework-8 and loaded it with DHA (DHA@Zif-8) to improve its antigiardial potential. DHA@Zif-8 can enhance cellular uptake, increase antigiardial proliferation and encystation, and expand the endoplasmic reticulum compared with the DHA-treated group. We used RNA sequencing (RNA-seq) to investigate the antigiardial mechanism. We found that 126 genes were downregulated and 123 genes were upregulated. According to the KEGG and GO pathway analysis, the metabolic functions in G. lamblia are affected by DHA@Zif-8 NPs. We used real-time quantitative reverse transcription polymerase chain reaction to verify our results using the RNA-seq data. DHA@Zif-8 NPs significantly enhanced the eradication of the parasite from the stool in vivo. In addition, the intestinal mucosal injury caused by G. lamblia trophozoites markedly improved in the intestine. This research provided the potential of utilizing DHA@Zif-8 to develop an antiprotozoan drug for clinical applications.

10.
Apoptosis ; 29(5-6): 920-933, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38625481

RESUMO

BACKGROUND: Severe acute pancreatitis (SAP) is a serious gastrointestinal disease that is facilitated by pancreatic acinar cell death. The protective role of human placental mesenchymal stem cells (hP-MSCs) in SAP has been demonstrated in our previous studies. However, the underlying mechanisms of this therapy remain unclear. Herein, we investigated the regularity of acinar cell pyroptosis during SAP and investigated whether the protective effect of hP-MSCs was associated with the inhibition of acinar cell pyroptosis. METHODS: A mouse model of SAP was established by the retrograde injection of sodium taurocholate (NaTC) solution in the pancreatic duct. For the hP-MSCs group, hP-MSCs were injected via the tail vein and were monitored in vivo. Transmission electron microscopy (TEM) was used to observe the pyroptosis-associated ultramorphology of acinar cells. Immunofluorescence and Western blotting were subsequently used to assess the localization and expression of pyroptosis-associated proteins in acinar cells. Systemic inflammation and local injury-associated parameters were evaluated. RESULTS: Acinar cell pyroptosis was observed during SAP, and the expression of pyroptosis-associated proteins initially increased, peaked at 24 h, and subsequently showed a decreasing trend. hP-MSCs effectively attenuated systemic inflammation and local injury in the SAP model mice. Importantly, hP-MSCs decreased the expression of pyroptosis-associated proteins and the activity of the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome in acinar cells. CONCLUSIONS: Our study demonstrates the regularity and important role of acinar cell pyroptosis during SAP. hP-MSCs attenuate inflammation and inhibit acinar cell pyroptosis via suppressing NLRP3 inflammasome activation, thereby exerting a protective effect against SAP.


Assuntos
Células Acinares , Modelos Animais de Doenças , Inflamassomos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Proteína 3 que Contém Domínio de Pirina da Família NLR , Pancreatite , Piroptose , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Camundongos , Células Acinares/metabolismo , Células Acinares/patologia , Inflamassomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Pancreatite/metabolismo , Pancreatite/terapia , Pancreatite/patologia , Humanos , Feminino , Transplante de Células-Tronco Mesenquimais/métodos , Placenta/metabolismo , Gravidez , Masculino , Camundongos Endogâmicos C57BL
11.
Chem Commun (Camb) ; 60(39): 5104-5135, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38625567

RESUMO

Water electrolysis is a promising method for efficiently producing hydrogen and oxygen, crucial for renewable energy conversion and fuel cell technologies. The hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are two key electrocatalytic reactions occurring during water splitting, necessitating the development of active, stable, and low-cost electrocatalysts. Transition metal (TM)-based electrocatalysts, spanning noble metals and TM oxides, phosphides, nitrides, carbides, borides, chalcogenides, and dichalcogenides, have garnered significant attention due to their outstanding characteristics, including high electronic conductivity, tunable valence electron configuration, high stability, and cost-effectiveness. This timely review discusses developments in TM-based electrocatalysts for the HER and OER in alkaline media in the last 10 years, revealing that the exposure of more accessible surface-active sites, specific electronic effects, and string effects are essential for the development of efficient electrocatalysts towards electrochemical water splitting application. This comprehensive review serves as a guide for designing and constructing state-of-the-art, high-performance bifunctional electrocatalysts based on TMs, particularly for applications in water splitting.

12.
RSC Adv ; 14(17): 11900-11907, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38623285

RESUMO

Transition metal oxides based anodes are facing crucial problems of capacity fading at long cycles and high rates due to electrode degradations. In this prospective, an effective strategy is employed to develop advanced electrode materials for lithium-ion batteries (LIBs). In the present work, a mesoporous Co3O4@CdS hybrid sructure is developed and investigated as anode for LiBs. The hybrid structure owning porous nature and large specific surface area, provides an opportunity to boost the lithium storage capabilities of Co3O4 nanorods. The Co3O4@CdS electrode delivers an initial discharge capacity of 1292 mA h g-1 at 0.1C and a very stable reversible capacity of 760 mA h g-1 over 200 cycles with a capacity retention rate of 92.7%. In addition, the electrode exhibits excellent cyclic stability even after 800 cycles and good rate performance as compared to previously reported electrodes. Moreover, density functional theory (DFT) and electrochemical impedance spectroscopy (EIS) confirm the enhanced kinetics of the Co3O4@CdS electrode. The efficient performance of the electrode may be due to the increased surface reactivity, abundant active sites/interfaces for rapid Li+ ion diffusion and the synergy between Co3O4 and CdS NPs. This work demonstrates that Co3O4@CdS hybrid structures have great potential for high performance batteries.

13.
Polymers (Basel) ; 16(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38674963

RESUMO

Weak bonds usually make macromolecules stronger; therefore, they are often used to enhance the mechanical strength of polymers. Not enough studies have been reported on the use of weak bonds in flame retardants. A water-soluble polyelectrolyte complex composed of polyethyleneimine (PEI), sodium tripolyphosphate (STPP) and melamine (MEL) was designed and utilized to treat bio-based polyamide 56 (PA56) by a simple three-step process. It was found that weak bonds cross-linked the three compounds to a 3D network structure with MEL on the surface of the coating under mild conditions. The thermal stability and flame retardancy of PA56 fabrics were improved by the controlled coating without losing their mechanical properties. After washing 50 times, PA56 still kept good flame retardancy. The cross-linking network structure of the flame retardant enhanced both the thermal stability and durability of the fabric. STPP acted as a catalyst for the breakage of the PA56 molecular chain, PEI facilitated the char formation and MEL released non-combustible gases. The synergistic effect of all compounds was exploited by using weak bonds. This simple method of developing structures with 3D cross-linking using weak bonds provides a new strategy for the preparation of low-cost and environmentally friendly flame retardants.

14.
Small Methods ; : e2400081, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38686691

RESUMO

High energy density electrochemical systems such as metal batteries suffer from uncontrollable dendrite growth on cycling, which can severely compromise battery safety and longevity. This originates from the thermodynamic preference of metal nucleation on electrode surfaces, where obtaining the crucial information on metal deposits in terms of crystal orientation, plated volume, and growth rate is very challenging. In situ liquid phase transmission electron microscopy (LPTEM) is a promising technique to visualize and understand electrodeposition processes, however a detailed quantification of which presents significant difficulties. Here by performing Zn electroplating and analyzing the data via basic image processing, this work not only sheds new light on the dendrite growth mechanism but also demonstrates a workflow showcasing how dendritic deposition can be visualized with volumetric and growth rate information. These results along with additionally corroborated 4D STEM analysis take steps to access information on the crystallographic orientation of the grown Zn nucleates and toward live quantification of in situ electrodeposition processes.

15.
Nanotechnology ; 35(25)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38461552

RESUMO

Bi-functional materials provide an opportunity for the development of high-performance devices. Up till now, bi-functional performance of NiCo2O4@SnS2nanosheets is rarely investigated. In this work, NiCo2O4@SnS2nanosheets were synthesized on carbon cloth by utilizing a simple hydrothermal technique. The developed electrode (NiCo2O4@SnS2/CC) was investigated for the detection of L-Cysteine and supercapacitors applications. As a non-enzymatic sensor, the electrode proved to be highly sensitive for the detection of L-cysteine. The electrode exhibits a reproducible sensitivity of 4645.82µA mM-1cm-2in a wide linear range from 0.5 to 5 mM with a low limit of detection (0.005µM). Moreover, the electrode shows an excellent selectivity and long-time stability. The high specific surface area, enhanced kinetics, good synergy and distinct architecture of NiCo2O4@SnS2nanosheets produce a large number of active sites with substantial energy storage potential. As a supercapacitor, the electrode exhibits improve capacitance of 655.7 F g-1at a current density of 2 A g-1as compare to NiCo2O4/CC (560 F g-1). Moreover, the electrode achieves 95.3% of its preliminary capacitance after 10 000 cycles at 2 A g-1. Our results show that NiCo2O4@SnS2/CC nanosheets possess binary features could be attractive electrode material for the development of non-enzymatic biosensors as well as supercapacitors.

16.
Environ Sci Pollut Res Int ; 31(18): 27037-27051, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38502266

RESUMO

Graphene-based material is widely used to remove arsenic from water due to its layered structure with high surface area. Here, we have successfully synthesized Fe-La bimetallic modified graphite sheet materials to more efficiently remove As(III) from aqueous solution. The results showed that Fe-La-graphite sheets (FL-graphite sheets) have a larger specific surface area (194.28 m2·g-1) than graphite sheets (2.80 m2·g-1). The adsorption capacity of FL-graphite sheets for As(III) was 51.69 mg·g-1, which was higher than that of graphite sheets (21.91 mg·g-1), La-graphite sheets (26.06 mg·g-1), and Fe-graphite sheets (40.26 mg·g-1). The FL-graphite sheets conformed to the Freundlich and Dubinin-Radushkevich isotherm, and the maximum adsorption capacity was 53.62 mg·g-1. The removal process obeys intra-particle diffusion and pore diffusion for As(III). The results of batch adsorption experiments and characterization analyses demonstrated that oxidation, ligand exchange, and inner sphere complexation mechanisms involved in the adsorption of FL-graphite sheets to As(III) in comparison with graphite sheets. In addition, electrostatic attraction mechanism was found vital in the adsorption. Ecotoxicity assessment revealed that FL-graphite sheets have little influence on rice germination and growth, but reduced the toxicity of As(III) to rice. Therefore, the FL-graphite sheets have good practical application value in purifying As(III) polluted water with litter ecotoxicity.


Assuntos
Arsênio , Grafite , Ferro , Termodinâmica , Poluentes Químicos da Água , Grafite/química , Grafite/toxicidade , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química , Cinética , Arsênio/química , Ferro/química , Adsorção , Purificação da Água/métodos
17.
Artigo em Inglês | MEDLINE | ID: mdl-38526893

RESUMO

View-based methods have demonstrated promising performance in 3D shape understanding. However, they tend to make strong assumptions about the relations between views or learn the multi-view correlations indirectly, which limits the flexibility of exploring inter-view correlations and the effectiveness of target tasks. To overcome the above problems, this paper investigates flexible organization and explicit correlation learning for multiple views. In particular, we propose to incorporate different views of a 3D shape into a permutation-invariant set, referred to as View Set, which removes rigid relation assumptions and facilitates adequate information exchange and fusion among views. Based on that, we devise a nimble Transformer model, named VSFormer, to explicitly capture pairwise and higher-order correlations of all elements in the set. Meanwhile, we theoretically reveal a natural correspondence between the Cartesian product of a view set and the correlation matrix in the attention mechanism, which supports our model design. Comprehensive experiments suggest that VSFormer has better flexibility, efficient inference efficiency and superior performance. Notably, VSFormer reaches state-of-the-art results on various 3d recognition datasets, including ModelNet40, ScanObjectNN and RGBD. It also establishes new records on the SHREC'17 retrieval benchmark. The code and datasets are available at https://github.com/auniquesun/VSFormer.

18.
Adv Mater ; 36(21): e2313378, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38340031

RESUMO

Green hydrogen, derived from water splitting powered by renewable energy such as solar and wind energy, provides a zero-emission solution crucial for revolutionizing hydrogen production and decarbonizing industries. Catalysts, particularly those utilizing defect engineering involving the strategical introduction of atomic-level imperfections, play a vital role in reducing energy requirements and enabling a more sustainable transition toward a hydrogen-based economy. Stacking fault (SF) defects play an important role in enhancing the electrocatalytic processes by reshaping surface reactivity, increasing active sites, improving reactants/product diffusion, and regulating electronic structure due to their dense generation ability and profound impact on catalyst properties. This review explores SF in metal-based materials, covering synthetic methods for the intentional introduction of SF and their applications in hydrogen production, including oxygen evolution reaction, photo- and electrocatalytic hydrogen evolution reaction, overall water splitting, and various other electrocatalytic processes such as oxygen reduction reaction, nitrate reduction reaction, and carbon dioxide reduction reaction. Finally, this review addresses the challenges associated with SF-based catalysts, emphasizing the importance of a detailed understanding of the properties of SF-based catalysts to optimize their electrocatalytic performance. It provides a comprehensive overview of their various applications in electrocatalytic processes, providing valuable insights for advancing sustainable energy technologies.

19.
Eur J Nutr ; 63(4): 1003-1022, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38300291

RESUMO

PURPOSE: Vitamins and polyunsaturated fatty acids (PUFAs) have been studied extensively as safe and manageable nutrient interventions for mild cognitive impairment (MCI). The purpose of the current meta-analysis was to examine the effects of vitamins and PUFAs on cognition and to compare the effects of single and multiple nutrient subgroups in patients with MCI. METHODS: Randomized controlled trials (RCTs) written in English and Chinese were retrieved from eight databases, namely, PubMed, CENTRAL, Embase, CINAHL, Web of Science, SinoMed, CNKI, and Wanfang Data, from their respective dates of inception until 16 July 2023. The quality of the included studies was assessed using the Cochrane Risk of Bias Tool 2.0. Meta-analyses were performed to determine the standardized mean differences (SMDs) in global cognitive function, memory function, attention, visuospatial skills, executive function, and processing speed between the supplement and control groups using 95% confidence intervals (CI) and I2. Prospero registration number: CRD42021292360. RESULTS: Sixteen RCTs that studied different types of vitamins and PUFAs were included. The meta-analysis revealed that vitamins affected global cognitive function (SMD = 0.58, 95% CI = [0.20, 0.96], P = 0.003), memory function (SMD = 2.55, 95% CI = [1.01, 4.09], P = 0.001), and attention (SMD = 3.14, 95% CI = [1.00, 5.28], P = 0.004) in patients with MCI, and PUFAs showed effects on memory function (SMD = 0.65, 95% CI = [0.32, 0.99], P < 0.001) and attention (SMD = 2.98, 95% CI = [2.11, 3.84], P < 0.001). Single vitamin B (folic acid [FA]: SMD = 1.21, 95% CI = [0.87, 1.55]) supplementation may be more effective than multiple nutrients (FA and vitamin B12: SMD = 0.71, 95% CI = [0.41, 1.01]; and FA combined with docosahexaenoic acid [DHA]: SMD = 0.58, 95% CI = [0.34, 0.83]) in global cognitive function. CONCLUSIONS: FA, vitamin B6, vitamin B12, and vitamin D may improve global cognitive function, memory function, and attention in patients with MCI. Eicosapentaenoic acid (EPA) and DHA may improve memory function and attention. We also noted that FA may exert a greater effect than a vitamin B combination (FA and vitamin B12) or the combination of FA and DHA. However, because of the low evidence-based intensity, further trials are necessary to confirm these findings.


Assuntos
Cognição , Disfunção Cognitiva , Ácidos Graxos Insaturados , Ensaios Clínicos Controlados Aleatórios como Assunto , Vitaminas , Idoso , Humanos , Cognição/efeitos dos fármacos , Suplementos Nutricionais , Ácidos Graxos Insaturados/administração & dosagem , Ácidos Graxos Insaturados/farmacologia , Vitaminas/farmacologia , Vitaminas/administração & dosagem
20.
Small ; : e2310786, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317521

RESUMO

High-entropy materials have attracted much attention in the electrocatalysis field due to their unique structure, high chemical activity, and compositional tunability. However, the harsh and complex synthetic methods limit the application of such materials. Herein, a universal non-equilibrium liquid-phase synthesis strategy is reported to prepare high-entropy amorphous oxide nanoparticles (HEAO-NPs), and the composition of HEAO-NPs can be precisely controlled from tri- to ten-component. The non-equilibrium synthesis environment provided by an excessively strong reducing agent overcomes the difference in the reduction potentials of various metal ions, resulting in the formation of HEAO-NPs with a nearly equimolar ratio. The oxygen evolution reaction (OER) performance of HEAO-NPs is further improved by adjusting the composition and optimizing the electronic structure. The Fe16 Co32 Ni32 Mn10 Cu10 BOy exhibits a smaller overpotential (only 259 mV at 10 mA cm-2 ) and higher stability in OER compared with commercial RuO2 . The amorphous high-entropy structure with an optimized concentration of iron makes the binding energy of CoNi shift to a higher direction, promotes the generation of high-valence active intermediates, and accelerates the OER kinetic process. The HEAO-NPs have promising application potential in the field of catalysis, biology, and energy storage, and this work provides a general synthesis method for composition-controllable high-entropy materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...