Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Orthop Surg (Hong Kong) ; 32(2): 10225536241256245, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38763777

RESUMO

BACKGROUND: While previous research has demonstrated potential advantages of unicompartmental knee arthroplasty (UKA) over total knee arthroplasty (TKA), particularly in terms of clinical outcomes such as function and pain relief, the specific impact on health-related quality of life (HRQOL) remains unclear. This systematic review and meta-analysis aim to address this gap by comparing HRQOL outcomes between UKA and TKA, providing valuable insights for clinical decision-making. METHODS: We conducted a literature search in the PubMed, Embase, Cochrane Controlled Register of Trials (CENTRAL), and Web of Science databases up to July 15, 2023. Eligible studies assessed HRQOL using EQ-5D, SF-36, or SF-12 and were assessed for methodological quality using the Newcastle-Ottawa Scale (NOS). RESULTS: Seven eligible studies were included, comprising a total of 64,585 patients with 35,809 undergoing TKA and 28,776 undergoing UKA. Patient age ranged from 52.0 to 67.7 years with an average BMI ranging from 27.2 to 31.0 kg/m2. Follow-up periods ranged from 6 months to 10 years. Five studies (63,829 patients) that evaluated HRQOL using EQ-5D showed significantly better outcomes for UKA compared to TKA (MD -0.04, 95% CI -0.05 to -0.02). Two studies (756 patients) that evaluated HRQOL using SF-36 showed no significant difference between TKA and UKA. Five studies (63,286 patients) that evaluated functional outcomes using Oxford Knee Score (OKS) showed significantly better functional scores for UKA compared to TKA (MD -1.29, 95% CI -1.86 to -0.72). Four studies (24,570 patients) that reported patient satisfaction showed no statistically significant difference between TKA and UKA (MD 0.97, 95% CI 0.90 to 1.05). Further subgroup analysis did not affect the conclusions. CONCLUSIONS: Our meta-analysis suggests that UKA is associated with better HRQOL and knee function, as well as similar patient satisfaction, compared to TKA for patients with unicompartmental osteoarthritis.


Assuntos
Artroplastia do Joelho , Osteoartrite do Joelho , Qualidade de Vida , Humanos , Artroplastia do Joelho/métodos , Osteoartrite do Joelho/cirurgia
2.
ACS Appl Mater Interfaces ; 16(17): 21450-21462, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38649157

RESUMO

Osteoarthritis (OA) is a common joint disease characterized by progressive cartilage degeneration. Unfortunately, currently available clinical drugs are mainly analgesics and cannot alleviate the development of OA. Kartogenin (KGN) has been found to promote the differentiation of bone marrow mesenchymal stem cells (BMSCs) into chondrocytes for the treatment of cartilage damage in early OA. However, KGN, as a small hydrophobic molecule, is rapidly cleared from the synovial fluid after intra-articular injection. This study synthesized a KGN-loaded nanocarrier based on PLGA/polydopamine core/shell structure to treat OA. The fluorescence signal of KGN@PLGA/PDA-PEG-E7 nanoparticles lasted for 4 weeks, ensuring long-term sustained release of KGN from a single intra-articular injection. In addition, the polyphenolic structure of PDA enables it to effectively scavenge reactive oxygen species, and the BMSC-targeting peptide E7 (EPLQLKM) endows KGN@PLGA/PDA-PEG-E7 NPs with an effective affinity for BMSCs. As a result, the KGN@PLGA/PDA-PEG-E7 nanoparticles could effectively induce cartilage in vitro and protect the cartilage and subchondral bone in a rat ACLT model. This therapeutic strategy could also be extended to the delivery of other drugs, targeting other tissues to treat joint diseases.


Assuntos
Anilidas , Indóis , Células-Tronco Mesenquimais , Nanopartículas , Osteoartrite , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polímeros , Ratos Sprague-Dawley , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia , Animais , Ratos , Injeções Intra-Articulares , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Nanopartículas/química , Polímeros/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Indóis/química , Indóis/farmacologia , Ácidos Ftálicos/química , Ácidos Ftálicos/farmacologia , Masculino , Portadores de Fármacos/química , Humanos
3.
J Nanobiotechnology ; 21(1): 193, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316836

RESUMO

Prolonged and incurable bacterial infections in soft tissue and bone are currently causing large challenges in the clinic. Two-dimensional (2D) materials have been designed to address these issues, but materials with satisfying therapeutic effects are still needed. Herein, CaO2-loaded 2D titanium carbide nanosheets (CaO2-TiOx@Ti3C2, C-T@Ti3C2) were developed. Surprisingly, this nanosheet exhibited sonodynamic ability, in which CaO2 caused the in situ oxidation of Ti3C2 MXene to produce acoustic sensitiser TiO2 on its surface. In addition, this nanosheet displayed chemodynamic features, which promoted a Fenton reaction triggered by self-supplied H2O2. We detected that C-T@Ti3C2 nanosheets increased reactive oxygen species (ROS) production in response to sonodynamic therapy, which displayed an ideal antibacterial effect. Furthermore, these nanoreactors facilitated the deposition of Ca2+, which promoted osteogenic transformation and enhanced bone quality in osteomyelitis models. Herein, a wound healing model and prosthetic joint infection (PJI) model were established, and the C-T@Ti3C2 nanosheets played a protective role in these models. Taken together, the results indicated that the C-T@Ti3C2 nanosheets function as a multifunctional instrument with sonodynamic features, which might reveal information regarding the treatment of bacterial infections during wound healing.


Assuntos
Osso e Ossos , Peróxido de Hidrogênio , Regeneração Óssea , Cicatrização
4.
Orthop Surg ; 15(6): 1645-1653, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37092381

RESUMO

OBJECTIVE: Bone cement releases a large amount of heat as it polymerizes. Skin burns caused by discarded bone cement are not well understood during arthroplasty. It is important to study the correlates and mechanisms of scalding and to accurately evaluate the severity of burns to guide treatment decisions. METHODS: Standardized burns were created in eight anesthetized rabbits using different thicknesses of bone cement. Bone cement was uniformly stirred to make thicknesses of 1 mm, 4 mm, 8 mm, 12 mm, 16 mm, and 20 mm and a 20 × 40 mm cuboid. Bone cement samples were then placed on the back of a rabbit, and the temperature changes were recorded with an industrial digital thermometer. One hour later, the appearance of scalded skin was observed, and the rabbits were euthanized. The scalded parts were cut to make pathological sections and stained with HE, and the differences in the depth of the scalded skin caused by different thicknesses of bone cement were observed under a light microscope. RESULTS: Damage caused by 1 mm-, 4 mm-, 8 mm-, 12 mm-, 16 mm-, and 20 mm-thick bone cement samples mainly involved the epidermis, the papillary dermis, the reticular dermis layer, and the full thickness of the skin and the subcutaneous tissue. The maximum temperature of 1 mm, 4 mm, 8 mm, and 12 mm bone cementation had a statistically significant difference (p < 0.001), while there was no significant difference between 12 mm, 16 mm, and 20 mm samples (p = 0.856). The time to severe scalding with bone cement at temperatures above 70°C was significantly different between different thicknesses (p < 0.001). CONCLUSION: The heat released by different thicknesses of bone cement leads to different maximum temperatures and the duration of severe burns, resulting in different degrees of skin burns. Attention should be paid to discarded bone cement to prevent this potential complication in knee arthroplasty.


Assuntos
Artroplastia do Joelho , Queimaduras , Animais , Coelhos , Cimentos Ósseos , Pele , Temperatura Alta , Queimaduras/etiologia , Queimaduras/patologia
5.
J Pers Med ; 13(3)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36983686

RESUMO

BACKGROUND: To investigate the efficacy and safety of autologous micro-fragmented adipose tissue (MF-AT) for improving joint function and cartilage repair in patients with knee osteoarthritis. METHODS: From March 2019 to December 2020, 20 subjects (40 knees) between 50 and 65 years old suffering from knee osteoarthritis were enrolled in the study and administered a single injection of autologous MF-A. The data of all patients were prospectively collected. The Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), knee society score (KSS), hospital for special surgery (HSS) score, visual analogue score (VAS) pain score, changes in cartilage Recht grade on magnetic resonance imaging (MRI) and adverse events were analyzed before and 3, 6, 9, 12 and 18 months after injection. RESULTS: The WOMAC, VAS, KSS and HSS scores at 3, 6, 9, 12 and 18 months after injection were improved compared with those before injection (p < 0.05). There was no significant difference in WOMAC scores between 9 and 12 months after injection (p > 0.05), but the WOMAC score 18 months after injection was worse than that at the last follow-up (p < 0.05). The VAS, KSS and HSS scores 9, 12 and 18 months after injection were worse than those at the last follow-up (p < 0.05). The Recht score improvement rate was 25%. No adverse events occurred during the follow-up. CONCLUSIONS: Autologous MF-AT improves knee function and relieves pain with no adverse events. However, the improved knee function was not sustained, with the best results occurring 9-12 months after injection and the cartilage regeneration remaining to be investigated.

6.
Orthop Surg ; 15(1): 230-238, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36440506

RESUMO

OBJECTIVE: The adjusted mechanical alignment (aMA) technique is an extension of conventional mechanical alignment (MA), which has rarely been reported. The purpose of this study was to evaluate mid-term outcomes of navigation-assisted total knee arthroplasty (TKA) using aMA. METHODS: This retrospective cohort study enrolled 63 consecutive patients (77 knees) who underwent navigation-assisted TKA using aMA between September 2017 and October 2019. Fifty-two consecutive patients (61 knees) who underwent TKA using MA during the same period were assessed as the controlled group. The demographic data and perioperative data were recorded. The parameters of resection and soft tissue balance including tibia resection angle, frontal femoral angle, axial femoral angle, joint line translation, medial and lateral gap in extension and flexion position were recorded. Radiographic parameters and functional scores including the Hospital for Special Surgery (HSS) score, Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score, and Forgotten Joint Score-12 (FJS-12) were evaluated. Surgery-related complications were recorded. The average follow-up was 3.5 years, with a minimum of 2.4 years. RESULTS: The frontal femoral angle was 2.55° ± 1.08° in aMA group versus 0.26° ± 0.60° in MA group (p < 0.001). The axial femoral angle was 3.07° ± 2.23° external in aMA group versus 2.30° ± 1.70° in MA group (p = 0.027). The lateral flexion gap was wider in the aMA group, with a mean of 0.71 mm more laxity (p = 0.001). Postoperative coronal alignment was 177.03° ± 1.82° in aMA group versus 178.14° ± 1.69° in MA group (p < 0.001). The coronal femoral component angle was 92.62° ± 2.78° in aMA group versus 90.85° ± 2.01° in MA group (p < 0.001). Both aMA-TKA and MA-TKA achieved satisfactory mid-term clinical outcomes. However, the HSS scores at 1 month postoperatively were significantly higher using aMA than using MA (p < 0.001). CONCLUSION: Navigation-assisted TKA using aMA technique obtained satisfactory mid-term clinical outcomes. The aMA technique aims to produce a biomimetic wider lateral flexion-extension gap and minimize releases of soft tissues, which might be associated with better early clinical outcomes than MA technique.


Assuntos
Artroplastia do Joelho , Prótese do Joelho , Osteoartrite do Joelho , Humanos , Artroplastia do Joelho/métodos , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/cirurgia , Estudos Retrospectivos , Fêmur/cirurgia , Tíbia/cirurgia , Osteoartrite do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/cirurgia
7.
J Bone Joint Surg Am ; 104(19): 1738-1749, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36197326

RESUMO

BACKGROUND: Femoral pin-site fracture is one of the most serious complications of navigation-assisted total knee arthroplasty (TKA). Its occurrence is associated with the loss of biomechanical strength caused by intraoperative femoral drilling. This study aimed to investigate the drilling location as a risk factor for pin-site fracture. METHODS: A biomechanical analysis using rabbit femora was performed to determine the effects of drilling eccentricity and height. Torsional, 3-point bending, and axial compression tests were performed to evaluate biomechanical parameters, including failure strength, failure displacement, and stiffness. Fracture type and the presence of comminution were noted and analyzed. Finite-element analysis (FEA) was utilized to assess the stress distribution and deformation. The cumulative sum (CUSUM) method was applied to define the safe range for drilling eccentricity. RESULTS: Drilling operations were accurately implemented. Biomechanical tests confirmed that severely eccentric drilling significantly reduced the biomechanical strength of the femur, especially in torsion. FEA results provided evidence of threatening stress concentration in severely eccentric drilling. The overall safe range of eccentricity relative to the center of the femur was found to be between 50% of the radius in the anterolateral direction and 70% of the radius in the posteromedial direction. CONCLUSIONS: Severely eccentric drilling significantly increased the risk of femoral pin-site fracture, especially under torsional stress. Femoral drilling should be performed in the safe zone that was identified.


Assuntos
Artroplastia do Joelho , Fraturas do Fêmur , Animais , Artroplastia do Joelho/efeitos adversos , Artroplastia do Joelho/métodos , Fenômenos Biomecânicos , Fraturas do Fêmur/etiologia , Fraturas do Fêmur/cirurgia , Fêmur/cirurgia , Análise de Elementos Finitos , Coelhos
8.
Orthop Surg ; 14(8): 1892-1901, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35768338

RESUMO

OBJECTIVE: To describe a new alignment technique of adjusted restricted kinematic alignment (arKA) for the treatment of severe varus deformity in total knee arthroplasty. METHODS: Three female patients (three severe varus knees) who underwent navigation-assisted total knee arthroplasty (TKA) using arKA from April 2020 to September 2020 were included in this study, with an average age of 71.33 years (range, 61 to 80 years). General anesthesia was given to all patients. Intraoperative observations including tibia resection angle, frontal femoral angle, axial femoral angle, medial and lateral gap in the extension and flexion positions and joint line translation were recorded. Also, operation duration and drainage volume were recorded. Radiographic parameters including the mechanical axis (α), coronal femoral component angle (ß), coronal tibial component angle (γ), sagittal femoral component angle (δ), tibial posterior slope angle (ε), femoral-patella angle (θ), and femoral notching were assessed. Clinical evaluation was performed using the Hospital for Special Surgery (HSS) Score and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) Score. Both individual and mean measurement data were displayed. RESULTS: The mean tibial resection was 4.00° varus (range, 3° to 5°), and the mean frontal femoral angle was 3.67° varus (range, 3° to 4°) in extension. The flexion lateral gap was wider than the medial gap with a mean laxity of 1.34 mm. Moreover, the mean axial femoral angle was 2.67° external (range, 0° to 6°) in flexion, and the mean joint line translation was 1.00 mm proximal (range, 0 to 3 mm). In addition, the mean preoperative mechanical axis was 156.22° (range, 153.65° to 158.90°) and the mean postoperative mechanical axis was 174.04° (range, 173.83° to 174.17°) with a mean correction of 17.82°. The mean femoral angle was 92.60° (range, 91.29° to 93.30°) and the mean tibial angle was 86.95° (range, 86.83° to 87.04°) in coronal plane. The HSS score improved from an average of 46.67 points (range, 42 to 51) preoperatively to 83.67 points (range, 81 to 86) at 3 months postoperatively. The mean WOMAC score was 16.33 points at 3 months postoperatively. CONCLUSIONS: The new alignment technique of arKA aims to balance the flexion and extension gap without extensive releases of soft tissue and restore the native pre-arthritic alignment, may be a promising alignment strategy for treating severe varus deformity. However, further study and comparison with other alignment techniques is needed.


Assuntos
Artroplastia do Joelho , Osteoartrite do Joelho , Idoso , Artroplastia do Joelho/métodos , Fenômenos Biomecânicos , Feminino , Fêmur/cirurgia , Humanos , Articulação do Joelho/cirurgia , Osteoartrite do Joelho/cirurgia , Tíbia/cirurgia
9.
J Inflamm Res ; 15: 2333-2347, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35437349

RESUMO

Background: Osteoarthritis (OA) is a degenerative joint disease that acts as a major cause of early disability in the old population. However, the molecular mechanisms of autophagy in osteoclasts involved in OA remain unclear. Methods: The gene expression profiles were downloaded from the Gene Expression Omnibus (GEO) repository. The NCBI GEO2R and ScanGEO analysis tool were used to identify differentially expressed genes (DEGs). The protein-protein interaction (PPI) network was predicted by the STRING website and visualized with Cytoscape software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were performed to enrich GO terms and signaling pathways using Metascape database. To predict LC3-interacting region (LIR) motif among these DEGs, the iLIR database was selected to assess specific short linear sequences. To obtain potential upstream miRNA targets of these DEGs, the mRNA-miRNA interaction networks were predicted by miRWalk database. The knee OA model was performed in mice, and autophagy related mRNAs of osteoclasts were identified. Experimental specimens were further verified with histopathological staining. Results: Becn1, Atg3, Atg12, Pik3c3, and Gabarapl2 were obtained as coexpressed differential genes. PPI network was constructed and deduced the other 60 related genes. GO and KEGG enrichment networks indicated that autophagy-animal, selective autophagy, and mitophagy mainly participated in autophagy regulation in osteoclasts. The possible LIR sequences were collected to predict motifs. The mRNA-miRNA interaction networks suggested that many miRNAs could regulate autophagy-related genes individually and collectively. The RT-PCR results suggested that these five genes were upregulated in the OA group. Histopathological staining revealed that osteoclasts were increased in subchondral bone, and higher expression of these DEGs in the OA group was compared to the sham group. Conclusion: Our results reveal that the role of autophagy in osteoclasts could be a regulatory mechanism in OA and that these autophagy-related genes might be targets for the intervention of OA disease.

10.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 35(10): 1273-1280, 2021 Oct 15.
Artigo em Chinês | MEDLINE | ID: mdl-34651480

RESUMO

OBJECTIVE: To estimate the early effectivenss of computer navigation-assisted total knee arthroplasty (TKA) by comparing with traditional TKA. METHODS: The clinical data of 89 patients (100 knees) underwent primary TKA between October 2017 and July 2018 were analyzed retrospectively, including 44 patients (50 knees) who completed the TKA under the computer-assisted navigation system as the navigation group and 45 patients (50 knees) treated with traditional TKA as the control group. There was no significant difference between the two groups ( P>0.05) in gender, age, body mass index, diagnosis, side, disease duration, Kellgren-Lawrence classification of osteoarthritis, and preoperative American Hospital for Special Surgery (HSS) score, range of motion (ROM), hip-knee-ankle angle (HKA) deviation. The operation time, incision length, difference in hemoglobin before and after operation, postoperative hospital stay, and the complications were recorded and compared between the two groups. The HSS score, ROM, and joint forgetting score (FJS-12) were used to evaluate knee joint function in all patients. Unilateral patients also underwent postoperative time of up and go test and short physical performance battery (SPPB) test. At 1 day after operation, the HKA, mechanical lateral distal femoral angle (mLDFA), mechanical medial proximal tibial angle (mMPTA), sagittal femoral component angle (sFCA), and sagittal tibial component angle (sTCA) were measured and calculated the difference between the above index and the target value (deviation); and the joint line convergence angle (JLCA) was also measured. RESULTS: The operations of the two groups were successfully completed, and the incisions healed by first intention. The operation time and incision length of the navigation group were longer than those of the control group ( P<0.05); the difference in difference of hemoglobin before and after the operation and the postoperative hospital stay between groups was not significant ( P>0.05). Patients in the two groups were followed up 27-40 months, with an average of 33.6 months. Posterior tibial vein thrombosis occurred in 1 case in each of the two groups, and 1 case in the control group experienced repeated knee joint swelling. The HSS scores of the two groups gradually increased after operation ( P<0.05); HSS scores in the navigation group at 1 and 2 years after operation, and knee ROM and FJS-12 scores at 2 years were significantly higher than those in the control group ( P<0.05). There was no significant difference in the postoperative time of up and go test and SPPB results between the two groups at 7 days after operation ( P>0.05); the postoperative time of up and go test of the navigation group was shorter than that of the control group at 2 years ( t=-2.226, P=0.029), but there was no significant difference in SPPB ( t=0.429, P=0.669). X-ray film measurement at 1 day after operation showed that the deviation of HKA after TKA in the navigation group was smaller than that of the control group ( t=-7.392, P=0.000); among them, the HKA deviations of 50 knees (100%) in the navigation group and 36 knees (72%) in the control group were less than 3°, showing significant difference between the two groups ( χ 2=16.279, P=0.000). The JLCA and the deviations of mLDFA, mMPTA, sFCA, and sTCA in the navigation group were smaller than those in the control group ( P<0.05). CONCLUSION: Compared with traditional TKA, computer navigation-assisted TKA can obtain more accurate prosthesis implantation position and lower limb force line and better early effectiveness. But there is a certain learning curve, and the operation time and incision length would be extended in the early stage of technology application.


Assuntos
Artroplastia do Joelho , Prótese do Joelho , Osteoartrite do Joelho , Computadores , Humanos , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/cirurgia , Osteoartrite do Joelho/cirurgia , Estudos Retrospectivos
11.
Cell Death Dis ; 12(11): 1035, 2021 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-34718335

RESUMO

In glucocorticoid (GC)-induced osteonecrosis of the femoral head (ONFH), downregulated osteogenic ability and damaged blood supply are two key pathogenic mechanisms. Studies suggested that cannabinoid receptor 2 (CB2) is expressed in bone tissue and it plays a positive role in osteogenesis. However, whether CB2 could enhance bone formation and blood supply in GC-induced ONFH remains unknown. In this study, we focused on the effect of CB2 in GC-induced ONFH and possible mechanisms in vitro and in vivo. By using GC-induced ONFH rat model, rat-bone mesenchymal stem cells (BMSCs) and human umbilical vein endothelial cells (HUVECs) to address the interaction of CB2 in vitro and in vivo, we evaluate the osteogenic and angiogenic effect variation and possible mechanisms. Micro-CT, histological staining, angiography, calcein labeling, Alizarin red staining (ARS), alkaline phosphatase (ALP), tartrate-resistant acid phosphatase (TRAP) staining, TUNEL staining, migration assay, scratch assay, and tube formation were applied in this study. Our results showed that selective activation of CB2 alleviates GC-induced ONFH. The activation of CB2 strengthened the osteogenic activity of BMSCs under the influence of GCs by promotion of GSK-3ß/ß-catenin signaling pathway. Furthermore, CB2 promoted HUVECs migration and tube-forming capacities. Our findings indicated that CB2 may serve as a rational new treatment strategy against GC-induced ONFH by osteogenesis activation and maintenance of blood supply.


Assuntos
Necrose da Cabeça do Fêmur/induzido quimicamente , Cabeça do Fêmur/irrigação sanguínea , Glucocorticoides/efeitos adversos , Osteogênese , Receptor CB2 de Canabinoide/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Proteína Axina/metabolismo , Diferenciação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Cabeça do Fêmur/diagnóstico por imagem , Cabeça do Fêmur/patologia , Necrose da Cabeça do Fêmur/diagnóstico por imagem , Necrose da Cabeça do Fêmur/patologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Metilprednisolona/efeitos adversos , Neovascularização Fisiológica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Perfusão , Fosforilação/efeitos dos fármacos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Microtomografia por Raio-X , beta Catenina/metabolismo
12.
Clin Transl Med ; 11(6): e447, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34185425

RESUMO

Glucocorticoids (GCs) are used in treating viral infections, acute spinal cord injury, autoimmune diseases, and shock. Several patients develop GC-induced osteonecrosis of the femoral head (ONFH). However, the pathogenic mechanisms underlying GC-induced ONFH remain poorly understood. GC-directed bone marrow mesenchymal stem cells (BMSCs) fate is an important factor that determines GC-induced ONFH. At high concentrations, GCs induce BMSC apoptosis by promoting oxidative stress. In the present study, we aimed to elucidate the molecular mechanisms that relieve GC-induced oxidative stress in BMSCs, which would be vital for treating ONFH. The endocannabinoid system regulates oxidative stress in multiple organs. Here, we found that monoacylglycerol lipase (MAGL), a key molecule in the endocannabinoid system, was significantly upregulated during GC treatment in osteoblasts both in vitro and in vivo. MAGL expression was positively correlated with expression of the NADPH oxidase family and apoptosis-related proteins. Functional analysis showed that MAGL inhibition markedly reduced oxidative stress and partially rescued BMSC apoptosis. Additionally, in vivo studies indicated that MAGL inhibition effectively attenuated GC-induced ONFH. Pathway analysis showed that MAGL inhibition regulated oxidative stress in BMSCs via the Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. The expression of Nrf2, a major regulator of intracellular antioxidants, was upregulated by inhibiting MAGL. Nrf2 activation can mimic the effect of MAGL inhibition and significantly reduce GC-induced oxidative damage in BMSCs. The beneficial effects of MAGL inhibition were attenuated after the blockade of the Keap1/Nrf2 antioxidant signaling pathway. Notably, pharmacological blockade of MAGL conferred femoral head protection in GC-induced ONFH, even after oxidative stress responses were initiated. Therefore, MAGL may represent a novel target for the prevention and treatment of GC-induced ONFH.


Assuntos
Apoptose , Cabeça do Fêmur/efeitos dos fármacos , Glucocorticoides/toxicidade , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Monoacilglicerol Lipases/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/metabolismo , Osteonecrose/prevenção & controle , Animais , Diferenciação Celular , Cabeça do Fêmur/patologia , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Fator 2 Relacionado a NF-E2/genética , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteonecrose/induzido quimicamente , Osteonecrose/metabolismo , Osteonecrose/patologia , Ratos , Ratos Sprague-Dawley
13.
Bioact Mater ; 6(10): 3343-3357, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33817415

RESUMO

Periprosthetic osteolysis (PPO) remains the key factor in implant failure and subsequent revision surgery and is mainly triggered by wear particles. Previous studies have shown that inhibition of osteoblastic differentiation is the most widespread incident affecting the interface of trabecular and loosening prostheses. Additionally, the NLRP3 inflammasome is activated by prosthetic particles. Sirtuin3, an NAD+-dependent deacetylase of mitochondria, regulates the function of mitochondria in diverse activities. However, whether SIRT3 can mitigate wear debris-induced osteolysis by inhibiting the NLRP3 inflammasome and enhancing osteogenesis has not been previously reported. Therefore, we investigated the role of SIRT3 during the process of titanium (Ti) particle-induced osteolysis. We revealed that upregulated SIRT3 dramatically attenuated Ti particle-induced osteogenic inhibition through suppression of the NLRP3 inflammasome and improvement of osteogenesis in vivo and in vitro. Moreover, we found that SIRT3 interference in the process of Ti particle-induced osteolysis relied on the GSK-3ß/ß-catenin signalling pathway. Collectively, these findings indicated that SIRT3 may serve as a rational new treatment against debris-induced PPO by deacetylase-dependent inflammasome attenuation.

14.
Int J Biol Sci ; 17(5): 1382-1394, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33867853

RESUMO

Implant-derived wear particles can be phagocytosed by local macrophages, triggering an inflammatory cascade that can drive the activation and recruitment of osteoclasts, thereby inducing peri-prosthetic osteolysis. Efforts to suppress pro-inflammatory cytokine release and osteoclastsogenesis thus represent primary approaches to treating and preventing such osteolysis. Sirtuin 3 (SIRT3) is a NAD+-dependent deacetylases that control diverse metabolic processes. However, whether SIRT3 could mitigate wear debris-induced osteolysis has not been reported. Herein we explored the impact of the SIRT3 on titanium particle-induced osteolysis. Tartrate resistant acid phosphatase (TRAP) staining revealed that the inhibition of SIRT3 suppressed nuclear factor-κB ligand (RANKL)-mediated osteoclasts activation in a dose-dependent fashion. Notably, inhibition of SIRT3 also suppressed matrix metallopeptidase 9 (MMP9) and nuclear factor of activated T-cell cytoplasmic 1 (NFATc1) expression at the mRNA and protein levels, while also inhibiting the mRNA expression of dendritic cell-specific transmembrane protein (DC-STAMP), ATPase H+ Transporting V0 Subunit D2 (Atp6v0d2), TRAP and Cathepsin K (CTSK) . In addition, inhibition of SIRT3 suppressed titanium particle-induced tumor necrosis factor-alpha (TNF-α), interleukin-1ß (IL-1ß) and interleukin-6 (IL-6) expression and prevented titanium particle-induced osteolysis and bone loss in vivo. This inhibition of osteoclasts differentiation was found to be linked to the downregulation and reduced phosphorylation of JNK and ERK. Taken together, inhibition of SIRT3 may be a potential target for titanium particle-induced bone loss.


Assuntos
Reabsorção Óssea , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Osteoclastos , Osteólise , Sirtuína 3 , Titânio/efeitos adversos , Animais , Reabsorção Óssea/induzido quimicamente , Reabsorção Óssea/imunologia , Reabsorção Óssea/metabolismo , Interface Osso-Implante/fisiologia , Diferenciação Celular , Células Cultivadas , Descoberta de Drogas , Interleucinas/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Fatores de Transcrição NFATC/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Osteoclastos/imunologia , Osteoclastos/metabolismo , Osteólise/induzido quimicamente , Osteólise/imunologia , Osteólise/metabolismo , Ligante RANK/metabolismo , Sirtuína 3/antagonistas & inibidores , Sirtuína 3/metabolismo
15.
Exp Cell Res ; 401(1): 112513, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33567325

RESUMO

PURPOSE: Femoral head necrosis (FHN) is a common disease of hip. However, the pathogenesis of FHN is not well understood. This study attempted to explore the potentially important genes and proteins involved in FHN. METHODS: We integrated the transcriptomic and proteomic methods to quantitatively screen the differentially expressed genes (DEGs) and proteins (DEPs) between Control and FHN groups. Gene ontology (GO) terms and KEGG pathway enrichment analysis were used to assess the roles of DEGs and DEPs. qRT-PCR and western blot were performed to verify the key genes/proteins in FHN. CCK-8 assay was performed to measure cell viability. The protein expression of Bax and Bcl-2 were used to evaluate cell apoptosis. RESULTS: Transcriptome and proteome studies indicated 758 DEGs and 1097 DEPs between Control and FHN groups, respectively. Cell division, extracellular exosome, and serine-type endopeptidase activity were the most common terms in biological process (BP), cellular component (CC), and molecular function (MF) enrichment, respectively. DEPs were mainly enriched in cellular process, cell, and binding for BP, CC, and MF categories, respectively. DEGs were mainly involved in PI3K-Akt pathway and DEPs were mainly focused in glycolysis/gluconeogenesis pathway. Notably, 14 down-regulated and 22 up-regulated genes/proteins were detected at both the transcript and protein level. LRG1, SERPINE2, STMN1, COL14A1, SLC37A2, and MMP2 were determined as the key genes/proteins in FHN. SERPINE2/STMN1 overexpression increased viability and decreased apoptosis of dexamethasone-treated MC3T3-E1 cells. CONCLUSIONS: Our study investigated some pivotal regulatory genes/proteins in the pathogenesis of FHN, providing novel insight into the genes/proteins involved in FHN.


Assuntos
Necrose da Cabeça do Fêmur/genética , Proteoma/genética , Proteômica , Transcriptoma/genética , Células 3T3 , Animais , Sobrevivência Celular/genética , Dexametasona/farmacologia , Necrose da Cabeça do Fêmur/induzido quimicamente , Necrose da Cabeça do Fêmur/patologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Ontologia Genética , Humanos , Camundongos , Fosfatidilinositol 3-Quinases/genética , Proteoma/classificação , Proteínas Proto-Oncogênicas c-bcl-2/genética , Serpina E2/genética , Estatmina/genética , Esteroides/toxicidade , Proteína X Associada a bcl-2/genética
16.
Acta Biochim Biophys Sin (Shanghai) ; 52(10): 1055-1062, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33085739

RESUMO

Accumulating evidence indicates that intracellular reactive oxygen species (ROS) production is highly involved in bone homeostasis by intervening osteoclast or osteoblast differentiation. Interestingly, ROS that are known as oxidizing agents exert dose-dependent biphasic properties in bone remodeling, including preventing osteoblast activity but accelerating osteoclast resorption. ROS mainly composed of superoxide anion radical, hydroxyl radical, nitric oxide, and two-electron reduction product hydrogen peroxide, which are important components to regulate bone cell metabolism and function in mammal skeleton. These free radicals can be partly produced in bone and boosted in an inflammation state. Although numerous researches have emphasized the impacts of ROS on bone cell biology and verified the mechanism of ROS signaling cascades, the recapitulatory commentary is necessary. In this review article, we particularly focus on the regulation of the intracellular ROS and its potential mechanism impacting on cell-signaling transduction in osteoclast and osteoblast differentiation for preferable understanding the pathogenesis and searching for novel therapeutic protocols for human bone diseases.


Assuntos
Osteoblastos/metabolismo , Osteoclastos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Reabsorção Óssea/metabolismo , Reabsorção Óssea/fisiopatologia , Sequestradores de Radicais Livres , Humanos
17.
Med Hypotheses ; 145: 110332, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33039950

RESUMO

At the end of 2019, a new kind of pneumonia which was proven to be supported by novel coronaviruses named SARS-CoV-2 emerges and it seems to be more complicate in its clinical course and management. Related researches have demonstrated that SARS-CoV-2 serves roles in respiratory, intestinal and neuronal diseases. Given the growing cases of COVID-19, analyzing the relevance between COVID-19 and fragile patients who suffer from bone destruction is entirely indispensable. Accordingly, the recapitulatory commentary is necessary to advance our knowledge on COVID-19 and orthopedics. In this article, we particularly clarify the possible relationship between the newly COVID-19 infection and bone lesions from the standpoints of dysimmunity and inflammatory storm.


Assuntos
Doenças Ósseas/virologia , COVID-19/fisiopatologia , Citocinas/sangue , Hipóxia , Inflamação/fisiopatologia , Doenças Ósseas/patologia , Osso e Ossos/patologia , Humanos , Doenças do Sistema Imunitário/fisiopatologia , Modelos Teóricos , Ortopedia , Osteoblastos/citologia , Osteoclastos/citologia , Fatores de Risco
18.
J Cell Physiol ; 235(3): 2599-2608, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31498438

RESUMO

Excessive osteoclast recruitment and activation is the chief cause of periprosthetic osteolysis and subsequent aseptic loosening, so blocking osteolysis may be useful for protecting against osteoclastic bone resorption. We studied the effect of aspirin on titanium (Ti)-particle-induced osteolysis in vivo and in vitro using male C57BL/6J mice randomized to sham (sham surgery), Ti (Ti particles), low-dose aspirin (Ti/5 mg·kg-1 ·d-1 aspirin), and high-dose aspirin (Ti/30 mg·kg-1 ·d-1 aspirin). After 2 weeks, a three-dimensional reconstruction evaluation using micro-computed tomography and histomorphology assessment were performed on murine calvariae. Murine hematopoietic macrophages and RAW264.7 lineage cells were studied to investigate osteoclast formation and function. Aspirin attenuated Ti-particle-induced bone erosion and reduced osteoclasts. In vitro, aspirin suppressed osteoclast formation, osteoclastic-related gene expression, and osteoclastic bone erosion in a dose-dependent manner. Mechanically, aspirin reduced osteoclast formation by suppressing receptor activator of nuclear factor kappa-B ligand-induced activation of extracellular signal-related kinase, p-38 mitogen-activated protein kinase, and c-Jun N-terminal kinase. Thus, aspirin may be a promising option for preventing and curing osteoclastic bone destruction, including peri-implant osteolysis.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Aspirina/farmacologia , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Osteoclastos/citologia , Osteogênese/efeitos dos fármacos , Osteólise/prevenção & controle , Animais , Artroplastia de Substituição/efeitos adversos , Linhagem Celular , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Macrófagos/metabolismo , Masculino , Nanopartículas Metálicas/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/antagonistas & inibidores , Próteses e Implantes/efeitos adversos , Células RAW 264.7 , Crânio/efeitos dos fármacos , Crânio/patologia , Titânio/efeitos adversos , Tomografia Computadorizada por Raios X , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
19.
Oxid Med Cell Longev ; 2019: 7189854, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781346

RESUMO

Intervertebral disc (IVD) degeneration (IDD) is a major cause of low back pain. The pathogenesis of IDD is associated with the disturbance of reactive oxygen species (ROS) equilibrium, inflammation, and matrix loss. Aspirin is a nonsteroidal anti-inflammatory drug that effectively inhibits inflammation and oxidative stress and has been widely used for the treatment of back pain. Therefore, we hypothesize that aspirin reverses the IDD process via antioxidative and anti-inflammatory effects on the AMPK signaling pathway. In vitro, aspirin diminished cellular oxygen free radicals (ROS, nitric oxide (NO)) and inflammatory cytokines (interleukin- (IL-) 1ß and IL-6 and tumor necrosis factor alpha (TNF-α)) induced by lipopolysaccharides (LPS) in nucleus pulposus cells (NPCs). We found that aspirin preserved the extracellular matrix (ECM) content of collagen type II (COL2) and aggrecan while inhibiting the expression of matrix-degenerating enzymes, including matrix metalloproteinase 3 and 13 (MMP-3 and MMP-13) and A disintegrin and metalloproteinase with thrombospondin motifs 4 and 5 (ADAMTS-4, ADAMTS-5). Aspirin significantly promoted the ratios of p-AMPK to AMPK and p-ACC to ACC expression in NPCs. Furthermore, pretreatment with the AMPK inhibitor compound C abrogated the antioxidant effects of aspirin. In vivo, an IDD model was established in Sprague-Dawley rats via percutaneous disc puncture with the 20-gauge needle on levels 8-9 and 9-10 of the coccygeal vertebrae. Imaging assessment showed that after aspirin treatment, improvements in disc height index (DHI) ranged from 1.22-fold to 1.54-fold and nucleus pulposus signal strength improved from 1.26-fold to 1.33-fold. Histological analysis showed that aspirin treatment prevented the loss of COL2 and decreased MMP-3 and MMP-13, inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), IL-1ß, and TNF-α expression in the IVD tissues. These results suggest that treatment with aspirin could reverse the IDD process via the AMPK signaling pathway, which provides new insights into the potential clinical applications of aspirin, particularly for IDD treatment.


Assuntos
Aspirina/farmacologia , Degeneração do Disco Intervertebral/tratamento farmacológico , Núcleo Pulposo/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Colágeno Tipo II/metabolismo , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Masculino , Metaloproteinase 13 da Matriz/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Núcleo Pulposo/patologia , Ratos , Ratos Sprague-Dawley
20.
Oxid Med Cell Longev ; 2019: 4019619, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31110599

RESUMO

Bone mass loss around prostheses is a major cause of implant failure, especially in postmenopausal osteoporosis patients. In osteoporosis, excess oxidative stress largely contributed abnormal bone remodeling. Melatonin, which is synthesized from the pineal gland, promotes osteoblast differentiation and bone formation and has effectively been used to combat oxidative stress. Thus, we determined if melatonin can inhibit oxidative stress to promote osteogenesis and improve bone mass around prostheses in osteoporosis. In this study, we observed that received melatonin at 50 mg/kg body weight significantly increased periprosthetic bone mass as well as implant fixation intensity in ovariectomized (OVX) rats. Meanwhile, it decreased the expression of oxidative stress markers (NAPDH oxidase 2 and cytochrome c) and enhanced expressing level of the formation markers of bones (alkaline phosphatase, osteocalcin, and osterix) around prostheses compared to that in the control group. Additionally, melatonin decreased hydrogen peroxide- (H2O2-) induced oxidative stress and restored the osteogenesis potential of MC3T3-E1 cells. Mechanistically, melatonin clearly increased mitochondrial sirtuin 3 (SIRT3) expression and decreased the ratio of acetylated superoxide dismutase 2 (AC-SOD2)/SOD2 compared to the H2O2 group. SIRT3 inhibition counteracted the protective effects of melatonin on oxidative stress and bone formation. Together, the results showed that melatonin ameliorated oxidative stress in mitochondrial via the SIRT3/SOD2 signaling pathway, thereby promoting osteogenesis, improving bone mass around the prostheses, and increasing initial stability. Thus, melatonin might be a suitable candidate to decrease the rate of implant failure and lengthen the lifespan of prostheses after total joint arthroplasty.


Assuntos
Densidade Óssea/efeitos dos fármacos , Melatonina/uso terapêutico , Mitocôndrias/metabolismo , Sirtuína 3/metabolismo , Superóxido Dismutase/metabolismo , Animais , Feminino , Humanos , Melatonina/farmacologia , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...