Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1418061, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903499

RESUMO

Extracellular vesicles (EVs), characterized by low immunogenicity, high biocompatibility and targeting specificity along with excellent blood-brain barrier permeability, are increasingly recognized as promising drug delivery vehicles for treating a variety of diseases, such as cancer, inflammation and viral infection. However, recent findings demonstrate that the intracellular delivery efficiency of EVs fall short of expectations due to phagocytic clearance mediated by the host mononuclear phagocyte system through Fcγ receptors, complement receptors as well as non-opsonic phagocytic receptors. In this text, we investigate a range of bacterial virulence proteins that antagonize host phagocytic machinery, aiming to explore their potential in engineering EVs to counteract phagocytosis. Special emphasis is placed on IdeS secreted by Group A Streptococcus and ImpA secreted by Pseudomonas aeruginosa, as they not only counteract phagocytosis but also bind to highly upregulated surface biomarkers αVß3 on cancer cells or cleave the tumor growth and metastasis-promoting factor CD44, respectively. This suggests that bacterial anti-phagocytic proteins, after decorated onto EVs using pre-loading or post-loading strategies, can not only improve EV-based drug delivery efficiency by evading host phagocytosis and thus achieve better therapeutic outcomes but also further enable an innovative synergistic EV-based cancer therapy approach by integrating both phagocytosis antagonism and cancer targeting or deactivation.


Assuntos
Vesículas Extracelulares , Fagocitose , Vesículas Extracelulares/imunologia , Vesículas Extracelulares/metabolismo , Fagocitose/imunologia , Humanos , Animais , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/metabolismo , Integrina alfaVbeta3/metabolismo , Integrina alfaVbeta3/imunologia , Receptores de Hialuronatos/metabolismo , Receptores de Hialuronatos/imunologia , Pseudomonas aeruginosa/imunologia
2.
Sci Total Environ ; 814: 151933, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-34838915

RESUMO

Multiple potentially toxic elements (PTEs) wastes are produced in the process of electroplating, which pollute the surrounding soils. However, the priority pollutants and critical risk factors in electroplating sites are still unclear. Hence, a typical demolished electroplating site (operation for 31 years) in the Yangtze River Delta was investigated. Results showed that the soil was severely polluted by Cr(VI) (1711.3 mg kg-1), Ni (6754.0 mg kg-1) and Pb (2784.4 mg kg-1). The spatial distribution of soil PTEs performed by ArcGIS illustrated that the soil pollution varied with plating workshops. Hard Cr electroplating workshops (HCE), decorative Cr electroplating workshops (DCE) and sludge storage station (SS) were the hot spots in the site. Besides, the toxicity characteristic leaching procedure (TCLP) - extractable Cr and Ni contents in different workshops were significantly related (P < 0.05) to their bioavailable fractions (exchangeable fraction (F1) + bound to carbonate fraction (F2)), which pose potential risk to humans. Although the soil total Pb concentration was high, its mobility was very low (<0.007%). Moreover, the soil microbial community dynamics under the stress of long term and high contents of PTEs were further revealed. The soil microbiota was significantly disturbed by long term and high concentration of PTEs. A bit of bacteria (Caulobacter) and fungi (Cladosporium and Monocillium) showed tolerance potential to multiple metals. Furthermore, the canonical correspondence analysis (CCA) showed that the bioavailable fractions (F1 + F2) of Cr and Ni were the most critical environmental variables affecting microbiota. Therefore, remediation strategies are required urgently to reduce the bioavailability of soil Cr and Ni. The results of this study provide an overview of the pollution distribution and microbial dynamics of a typical plating site, laying a foundation for ecological remediation of electroplating sites in Yangtze River Delta of China.


Assuntos
Metais Pesados , Microbiota , Poluentes do Solo , China , Galvanoplastia , Monitoramento Ambiental , Humanos , Metais Pesados/análise , Medição de Risco , Solo , Poluentes do Solo/análise
3.
Nanomaterials (Basel) ; 11(10)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34685019

RESUMO

The aggregation of nanoscale zero-valent iron (nZVI) particles and their limited transport ability in environmental media hinder their application in environmental remediation. In this study, the Cr(VI) removal efficiency, transport performance, and toxicity of nZVI and bentonite-modified nZVI (B-nZVI) were investigated. Compared with nZVI, B-nZVI improved the removal efficiency of Cr(VI) by 10%, and also significantly increased the transport in quartz sand and soil. Increasing the flow rate can enhance the transport of nZVI and B-nZVI in the quartz sand columns. The transport of the two materials in different soils was negatively correlated with the clay composition. Besides, modification of nZVI by bentonite could reduce toxicity to luminous bacteria (Photobacterium phosphereum T3) and ryegrass (Lolium perenne L.). Compared with Fe-EDTA, the transfer factors of nZVI and B-nZVI were 65.0% and 66.4% lower, respectively. This indicated that although iron nanoparticles accumulated in the roots of ryegrass, they were difficult to be transported to the shoots. The results of this study indicate that B-nZVI has a strong application potential in in situ environmental remediation.

4.
Chemosphere ; 283: 131043, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34146868

RESUMO

Lead (Pb) and arsenic (As) exist in soil with different ionic forms, and it is difficult to immobilize simultaneously Pb and As in soil. The objective of this study is to determine the effects of water management including flooding (FL), alternate wetting and drying (AWD) and dry farming (DF) combined with addition of phosphate (P) on the accumulation of Pb and As in rice. Our results showed that Pb accumulated in root during vegetative stage, and most of As in root was transported to the above ground parts during the reproductive stage. Pb was evenly distributed in grains, and As was mostly accumulated in bran and aleurone layer. Water management had a reverse effect on the accumulation of Pb and As in rice. However, the effects of P on arid soil environment and Pb, As accumulation in rice were stronger than that in flooded soil. Application of P under AWD treatment could maintain a similar quantity of Fe plaque with flooding, decrease the availability of Pb in rhizosphere soil, reduce Pb and As accumulation in root, and result in the reduction of Pb and As accumulation in grains by 86% and 66% respectively. Besides, our study also found that flooding or AWD during vegetative stage facilitated the formation of iron plaque. In conclusion, AWD combined with P application could maintain a relatively lower concentrations of Pb and As in grains.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Arsênio/análise , Chumbo , Fosfatos , Solo , Poluentes do Solo/análise , Água , Abastecimento de Água
5.
Ecotoxicol Environ Saf ; 201: 110863, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32544749

RESUMO

Mercury is a toxic, persistent, and mobile contaminant. Coal spontaneous combustion are widely distributed in the world and releases a great deal of Hg. Identifying the burning coal seam is crucial for quickly extinguishing a coalfield fire. Mercury isotopes can be effective for identifying burning coal seams and beneficial for combating coal spontaneous combustion. In this study, Hg isotopic ratios of coal, topsoil, dustfall, sand, coal fire sponges (CFS), and n-topsoil (topsoil near the CFS) from coal fire area No. 9 in the Wuda coalfield were determined using multiple-collector inductively coupled plasma mass spectrometry (MC-ICPMS). Analysis of the correlation coefficients between the δ202Hg and Hg concentrations and the low-temperature ashes indicate that the higher mineral concentration in coal seam No. 9 not only increases the Hg concentration but also leads to more positive δ202Hg values compared to those for coal seam No. 10. By analyzing the Hg isotope characterizations in coal seam No. 9 and No. 10, we determined that Hg isotope characterizations can be useful for discriminating different coal seam Hg values in a coalfield. Significant mass-dependent fractionation (MDF) occur in the coal burning. The fractionation effect of burning and absorption process can play a key role in the δ202Hg more negative of ground surface samples. If Hg isotopes is added, the effect of coal-fire monitoring may be better. In addition, these finding could be used to better understand the transport and cycling of Hg.


Assuntos
Carvão Mineral/análise , Poluentes Ambientais/análise , Mercúrio/análise , Minas de Carvão , Isótopos de Mercúrio , Combustão Espontânea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...