Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Eur J Med Chem ; 228: 114040, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34906761

RESUMO

The RAS-RAF-MEK-ERK signaling pathway plays a key role to regulate multiple cellular functions. Acquired resistance to the first-generation RAF inhibitors that only targeted the bRAFV600E mutation prompted the need for a new generation of RAF inhibitors to target cancers bearing mutant RAS and wild type RAF activity by inhibition of paradoxical activation. Starting from the company's previously reported RAF inhibitor 1, extensive drug potency and drug-like properties optimizations led to the discovery of molecule 33 (SHR902275) with greatly improved in vitro potency and solubility. Molecule 33 exhibited good DMPK (Drug Metabolism and Pharmacokinetics) properties, excellent permeability, and outstanding mouse/rat oral PK. It was further evaluated in an in vivo RAS mutant Calu6 xenograft mouse model and demonstrated dose dependent efficacy. To achieve high exposure in a toxicity study, pro-drug 48 was also explored.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Humanos , Camundongos , Camundongos Nus , Modelos Moleculares , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas B-raf/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
2.
Sci Rep ; 11(1): 9132, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33911101

RESUMO

Clinical success of IL-17/IL-23 pathway biologics for the treatment of moderate to severe psoriasis suggests that targeting RORγt, a master regulator for the proliferation and function of Th17 cells, could be an effective alternative. However, oral RORγ antagonists (VTP43742, TAK828) with high systemic exposure showed toxicity in phase I/II clinical trials and terminated development. To alleviate the potential safety concerns, identifying compounds with skin-restricted exposure amenable for topical use is of great interest. Systematic structure activity relationship study and multi-parameter optimization led to the discovery of a novel RORγ antagonist (SHR168442) with desired properties for a topical drug. It suppressed the transcription of IL-17 gene, leading to reduction of IL-17 cytokine secretion. It showed high exposure in skin, but low in plasma. Topical application of SHR168442 in Vaseline exhibited excellent efficacy in the imiquimod-induced and IL-23-induced psoriasis-like skin inflammation mouse models and correlated with the reduction of Th17 pathway cytokines, IL-6, TNFα and IL-17A. This work demonstrated restricted skin exposure of RORγ antagonist may provide a new topical treatment option as targeted therapeutics for mild to moderate psoriasis patients and may be suitable for the treatment of any other inflammatory disorders that are accessible locally.


Assuntos
Benzimidazóis/uso terapêutico , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/antagonistas & inibidores , Psoríase/tratamento farmacológico , Administração Tópica , Animais , Benzimidazóis/química , Benzimidazóis/metabolismo , Benzimidazóis/farmacologia , Sítios de Ligação , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Estabilidade de Medicamentos , Humanos , Imiquimode/toxicidade , Interleucina-17/metabolismo , Interleucina-23/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Psoríase/induzido quimicamente , Psoríase/patologia , Ratos , Ratos Sprague-Dawley , Índice de Gravidade de Doença , Pele/efeitos dos fármacos , Pele/patologia
3.
ACS Med Chem Lett ; 10(6): 996-1001, 2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31223461

RESUMO

The oxytocin receptor (OTR) plays a major role in the control of male sexual responses. Antagonists of the OTR have been reported to inhibit ejaculation in animal models and serve as a potential treatment for premature ejaculation (PE). Herein, we describe a novel scaffold featuring an aryl substituted 3-azabicyclo [3.1.0] hexane structure. The lead compound, SHR1653, was shown to be a highly potent OTR antagonist, which exhibited excellent selectivity over V1AR, V1BR, and V2R. This novel molecule was shown to have a favorable pharmacokinetic profile across species, as well as robust in vivo efficacy in a rat uterine contraction model. Interestingly, SHR1653 exhibited excellent blood-brain barrier penetration, which might be beneficial for the treatment of CNS-related PE.

4.
Catheter Cardiovasc Interv ; 89(1): E30-E37, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26811261

RESUMO

OBJECTIVES: To evaluate a new transapical system which utilizes a novel designed positioning element and a two-step positioning mechanism for easy and accurate implantation of transcatheter valves. BACKGROUND: Transcatheter aortic valve implantation is an important treatment option for non-surgical patients with severe aortic stenosis. However, accurate placement of the transcatheter valve remains challenging. METHODS: Self-expandable aortic valve prosthesis with a flexibly connected, annulus-like positioning element was implanted through a transapical approach in 12 pigs. The positioning element was separated and can be released independent of the valve prosthesis. During valve implantation, firstly, the positioning element was unsheathed and fixed into the aortic sinus. Then, the prosthetic valve was guided to an anatomically oriented position and deployed. Six animals were followed up to 180 days. RESULTS: With the help of the positioning element, all 12 valves were successfully deployed at the anticipated site. The valve release procedure took an average of 7.3 ± 2.5 min. The mean transvalvular pressure gradient was 2.8 ± 1.1 mm Hg at valve deployment. Of the six chronic animals, the mean transvalvular pressure gradient was 3.0 ± 1.0 mm Hg on day 7, and 2.9 ± 1.6 mm Hg on day 180 (P = 0.91). No migration, embolization, or coronary obstruction was observed during surgery and at necropsy. Pathological examination showed anatomically correct positioning of the prosthetic valve without signs of thrombosis or calcification. CONCLUSIONS: In this study, we confirmed the feasibility of the J-Valve transapical system for transapical implantation through a two-step process. Satisfactory hemodynamic and pathological performance during a follow-up of 180 days was demonstrated. © 2016 Wiley Periodicals, Inc.


Assuntos
Valva Aórtica , Cateterismo Cardíaco/instrumentação , Implante de Prótese de Valva Cardíaca/instrumentação , Próteses Valvulares Cardíacas , Animais , Valva Aórtica/diagnóstico por imagem , Valva Aórtica/patologia , Valva Aórtica/fisiopatologia , Cateterismo Cardíaco/métodos , Estudos de Viabilidade , Implante de Prótese de Valva Cardíaca/efeitos adversos , Implante de Prótese de Valva Cardíaca/métodos , Hemodinâmica , Modelos Animais , Desenho de Prótese , Radiografia Intervencionista , Suínos , Porco Miniatura , Fatores de Tempo
5.
J Surg Educ ; 73(4): 583-8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27168385

RESUMO

OBJECTIVE: Existing simulators for off-pump coronary artery (CA) bypass grafting training are unable to provide cardiac surgery residents all necessary skills they need entering the operation room. In this study, we introduced a secure and high-fidelity live animal model to supplement the in vitro simulators for off-pump CA bypass grafting training. DESIGN: The left internal thoracic artery (ITA) of 3 Chinese miniature pigs was grafted to the left anterior descending CA using an end-to-side anastomosis. The free segment of the ITA was fixed on the ventricle surface, making it a simulative CA beating in synchrony with the heart. A total of 6 to 8 training anastomoses were made on each ITA. SETTING: Animal Experiment Center in Fuwai Hospital. PARTICIPANTS: In total, 19 resident surgeons with at least 3 years of cardiac surgery work experience were trained using the new model. Their performances were recorded and reviewed. RESULTS: Simulative coronary arteries were successfully constructed in all 3 animals with no adverse event observed. A total of 19 anastomoses were then completed, 1 pig of 7 anastomoses and the other 2 animals of 6 anastomoses. Time consumption for the anastomosis was 782 ± 107 seconds. Anastomotic leakage was observed in 10/19 procedures. The most frequency site (7/10) was at the toe of the anastomosis. Further, the most common cause was uneven spacing or small margin of the stitches or both. Emergencies occurred during the training process included hypotension (7 procedures), tachyarrhythmia (4 procedures), and low blood oxygen saturation (1 procedure). CONCLUSIONS: This study demonstrated the safety and feasibility of our new live pig model in training resident surgeons. The simulative arteries can be easily accomplished and were long enough to place at least 6 anastomoses. Both on lumen diameter and motion status, they were proven to be a good substitution of the CA.


Assuntos
Ponte de Artéria Coronária sem Circulação Extracorpórea/educação , Educação de Pós-Graduação em Medicina , Cirurgia Torácica/educação , Anastomose Cirúrgica , Animais , China , Modelos Animais de Doenças , Internato e Residência , Suínos , Porco Miniatura
6.
J Med Chem ; 58(1): 333-46, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25254961

RESUMO

We previously demonstrated that selective inhibition of protein kinase Cθ (PKCθ) with triazinone 1 resulted in dose-dependent reduction of paw swelling in a mouse model of arthritis.1,2 However, a high concentration was required for efficacy, thus providing only a minimal safety window. Herein we describe a strategy to deliver safer compounds based on the hypothesis that optimization of potency in concert with good oral pharmacokinetic (PK) properties would enable in vivo efficacy at reduced exposures, resulting in an improved safety window. Ultimately, transformation of 1 yielded analogues that demonstrated excellent potency and PK properties and fully inhibited IL-2 production in an acute model. In spite of good exposure, twice-a-day treatment with 17l in the glucose-6-phosphate isomerase chronic in vivo mouse model of arthritis yielded only moderate efficacy. On the basis of the exposure achieved, we conclude that PKCθ inhibition alone is insufficient for complete efficacy in this rodent arthritis model.


Assuntos
Anti-Inflamatórios/farmacologia , Artrite Experimental/tratamento farmacológico , Isoenzimas/antagonistas & inibidores , Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/metabolismo , Artrite Experimental/metabolismo , Cristalografia por Raios X , Modelos Animais de Doenças , Humanos , Interleucina-2/metabolismo , Isoenzimas/química , Isoenzimas/metabolismo , Masculino , Camundongos , Modelos Químicos , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Proteína Quinase C/química , Proteína Quinase C/metabolismo , Proteína Quinase C-theta , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína , Resultado do Tratamento
7.
Mol Biol Rep ; 41(12): 8047-53, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25209966

RESUMO

Acute myocardial infarction (AMI) is one of the most common cardiovascular emergencies, of which the molecular pathogenesis is still not fully understood. This study aimed to explore the differentially expressed genes (DEGs) and then identify the critical genes in AMI thus screening out potential biomarkers for the early diagnosis of this serious heart disease. The gene expression data of AMI patients (GSE19339) were downloaded from gene expression omnibus database. After preprocessing with affy package, the DEGs were screened out by significance analysis of microarray (SAM) algorithm within samr package. Then function and pathway enrichment analyses of the DEGs were carried out using DAVID (database for annotation visualization and integrated discovery software) online tools. Further, the relevant genes of AMI were screened out with GENETIC_ASSOCIATION_DB_DISEASE analysis and blastp alignment. Finally, the novel genes were subjected to transcription factor and protein-protein interaction network analyses. A total of 633 DEGs, including 378 up-regulated and 255 down-regulated, were screened out between AMI patients and normal control samples. Among those genes, several important ones such as PPAR, CCL2, HMOX1 and NPR1 were demonstrated to be related to AMI. Most importantly, a novel gene LCK (lymphocyte-specific protein tyrosine kinase) was significantly differentially expressed in AMI. Further analyses showed that LCK was involved in the expression regulation of CXCL12 (chemokine (C-X-C motif) ligand 12) and the expression of LCK can be regulated by different transcription factors. In this study, we provided a new insight into the mechanism of AMI and raised LCK as an attractive marker candidate in the diagnosis of this serious heart disease.

8.
Life Sci ; 91(19-20): 951-8, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-23000028

RESUMO

AIM: It is well known that neural stem/progenitor cells (NS/PC) are an ideal cell type for the treatment of central nervous system (CNS) disease. However, ethical problems have severely hampered fetal NS/PC from being widely used as a source for stem cell therapy. Recently, it has been demonstrated that autologous bone marrow mesenchymal stem cells (BMSC) can transdifferentiate into neural progenitor cells (NPC). The biological function of BMSC derived NPC (MDNPC) in neuronal systems remains unknown. In the present study, we aimed to investigate whether MDNPC can promote in vitro neural regeneration, a process comprising mainly the generation of neurons and neurotransmitters. MAIN METHODS: We co-cultured BMSC, MDNPC or fetal NS/PC with PC12 cells and studied their roles on proliferation, neurite formation and dopamine release from PC12 cells. Furthermore, we also explored the mechanisms by which MDNPC regulate dopamine secretion from PC12 derived neural cells using Western blot. KEY FINDINGS: We found that both MDNPC and NS/PC had similar morphologies and there were no significant differences between MDNPC and NS/PC in promoting PC12 cell proliferation, neurite outgrowth, and dopamine release. We also demonstrated that NS/PC induced dopamine secretion was associated with an upregulation of dopamine transporter (DAT) levels. SIGNIFICANCE: In summary, MDNPC were comparable to NS/PC in promoting neural regeneration, indicating that MDNPC are a promising candidate source of neural stem cells for the treatment of neurological diseases.


Assuntos
Células da Medula Óssea/metabolismo , Células-Tronco Mesenquimais/metabolismo , Regeneração Nervosa , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Animais , Far-Western Blotting , Proliferação de Células , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Neuritos/metabolismo , Células PC12 , Ratos , Ratos Sprague-Dawley , Regulação para Cima
9.
Mol Cell Pharmacol ; 2(3): 101-110, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20686672

RESUMO

Cytoplasmic citrate is the prime carbon source for fatty acid, triacylglycerol, and cholesterol biosyntheses, and also regulates glucose metabolism via its allosteric inhibition of phosphofructokinase. It originates either via the efflux of citrate from the mitochondrial matrix on the inner membrane citrate transport protein (CTP) or via the influx of extracellular citrate on the plasma membrane citrate transporter (PMCT). Despite their common substrate, the two transport proteins share little sequence similarity and they transport citrate via fundamentally different mechanisms. We tested the ability of a set of previously identified CTP inhibitors, to inhibit the PMCT. We found that of the top 10 CTP inhibitors only one substantially inhibited the PMCT. Conversely, we identified two other inhibitors that inhibited the PMCT but had little effect on the CTP. All three identified PMCT inhibitors displayed a noncompetitive mechanism. Furthermore, models to explain inhibitor interactions with the CTP are proposed. As part of the present studies a PMCT homology model has been developed based on the crystal structure of the leucine transporter, and a possible citrate binding site has been identified and its composition compared with the two known citrate binding sites present within the CTP. The ability to selectively inhibit the PMCT may prove key to the pharmacologic amelioration of metabolic disorders resulting from the synthesis of excess lipid, cholesterol, and glucose, including human obesity, hyperlipidemia, hyper-cholesterolemia, and Type 2 diabetes.

10.
J Biol Chem ; 285(35): 27314-27326, 2010 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-20551333

RESUMO

The objective of this study was to identify the role of individual amino acid residues in determining the substrate specificity of the yeast mitochondrial citrate transport protein (CTP). Previously, we showed that the CTP contains at least two substrate-binding sites. In this study, utilizing the overexpressed, single-Cys CTP-binding site variants that were functionally reconstituted in liposomes, we examined CTP specificity from both its external and internal surfaces. Upon mutation of residues comprising the more external site, the CTP becomes less selective for citrate with numerous external anions able to effectively inhibit [(14)C]citrate/citrate exchange. Thus, the site 1 variants assume the binding characteristics of a nonspecific anion carrier. Comparison of [(14)C]citrate uptake in the presence of various internal anions versus water revealed that, with the exception of the R189C mutant, the other site 1 variants showed substantial uniport activity relative to exchange. Upon mutation of residues comprising site 2, we observed two types of effects. The K37C mutant displayed a markedly enhanced selectivity for external citrate. In contrast, the other site 2 mutants displayed varying degrees of relaxed selectivity for external citrate. Examination of internal substrates revealed that, in contrast to the control transporter, the R181C variant exclusively functioned as a uniporter. This study provides the first functional information on the role of specific binding site residues in determining mitochondrial transporter substrate selectivity. We interpret our findings in the context of our homology-modeled CTP as it cycles between the outward-facing, occluded, and inward-facing states.


Assuntos
Proteínas de Transporte/metabolismo , Ácido Cítrico/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Substituição de Aminoácidos , Ânions/química , Ânions/metabolismo , Sítios de Ligação , Proteínas de Transporte/química , Proteínas de Transporte/genética , Ácido Cítrico/química , Transporte de Íons/fisiologia , Mitocôndrias/química , Mitocôndrias/genética , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Mutação de Sentido Incorreto , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato/fisiologia
11.
J Bioenerg Biomembr ; 42(2): 99-109, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20354774

RESUMO

The present investigation utilized the site-directed spin labeling method of electron paramagnetic resonance (EPR) spectroscopy to identify the effect of citrate, the natural ligand, and transport inhibitors on the conformation of the yeast mitochondrial citrate transport protein (CTP) reconstituted in liposomal vesicles. Spin label was placed at six different locations within the CTP in order to monitor conformational changes that occurred near each of the transporter's two substrate binding sites, as well as at more distant domains within the CTP architecture. We observed that citrate caused little change in the EPR spectra. In contrast the transport inhibitors 1,2,3-benzenetricarboxylate (BTC), pyridoxal 5'-phosphate (PLP), and compound 792949 resulted in spectral changes that indicated a decrease in the flexibility of the attached spin label at each of the six locations tested. The rank order of the immobilizing effect was compound 792949 > PLP > BTC. The four spin-label locations that report on the CTP substrate binding sites displayed the greatest changes in the EPR spectra upon addition of inhibitor. Furthermore, we found that when compound 792949 was added vectorially (i.e., extra- and/or intra-liposomally), the immobilizing effect was mediated nearly exclusively by external reagent. In contrast, upon addition of PLP vectorially, the effect was mediated to a similar extent from both the external and the internal compartments. In combination our data indicate that: i) citrate binding to the CTP substrate binding sites does not alter side-chain and/or backbone mobility in a global manner and is consistent with our expectation that both in the absence and presence of substrate the CTP displays the flexibility required of a membrane transporter; and ii) binding of each of the transport inhibitors tested locked multiple CTP domains into more rigid conformations, thereby exhibiting long-range inter-domain conformational communication. The differential vectorial effects of compound 792949 and PLP are discussed in the context of the CTP homology-modeled structure and potential mechanistic molecular explanations are given.


Assuntos
Proteínas de Transporte/química , Proteínas Imobilizadas/metabolismo , Proteínas Mitocondriais/química , Modelos Moleculares , Conformação Proteica , Derivados de Benzeno/metabolismo , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/metabolismo , Ácido Cítrico/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Lipossomos , Proteínas Mitocondriais/metabolismo , Fosfato de Piridoxal/metabolismo , Marcadores de Spin , Ácidos Tricarboxílicos/metabolismo , Leveduras
12.
Mol Pharmacol ; 77(1): 26-34, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19843634

RESUMO

The mitochondrial citrate transport protein (CTP) is critical to energy metabolism in eukaryotic cells. We demonstrate that 1,2,3-benzenetricarboxylate (BTC), the classic and defining inhibitor of the mitochondrial CTP, is a mixed inhibitor of the reconstituted Cys-less CTP, with a strong competitive component [i.e., a competitive inhibition constant (K(ic)) of 0.12 +/- 0.02 mM and an uncompetitive inhibition constant (K(iu)) of 3.04 +/- 0.74 mM]. Based on docking calculations, a model for BTC binding has been developed. We then determined the K(ic) values for each of the eight substrate binding site cysteine substitution mutants and observed increases of 62- to 261-fold relative to the Cys-less control, thereby substantiating the importance of each of these residues in BTC binding. It is noteworthy that we observed parallel increases in the K(m) for citrate transport with each of these binding site mutants, thereby confirming that with these CTP variants, K(m) approximates the K(d) (for citrate) and is therefore a measure of substrate affinity. To further substantiate the importance of these binding site residues, in silico screening of a database of commercially available compounds has led to discovery of the first purely competitive inhibitor of the CTP. Docking calculations indicate that this inhibitor spans and binds to both substrate sites simultaneously. Finally, we propose a kinetic model for citrate transport in which the citrate molecule sequentially binds to the external and internal binding sites (per CTP monomer) before transport.


Assuntos
Derivados de Benzeno/química , Proteínas de Transporte/antagonistas & inibidores , Modelos Moleculares , Ácidos Tricarboxílicos/química , Derivados de Benzeno/farmacologia , Sítios de Ligação , Ligação Competitiva , Transporte Biológico , Proteínas de Transporte/química , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/química , Proteínas Mitocondriais , Ligação Proteica , Especificidade por Substrato , Ácidos Tricarboxílicos/farmacologia
13.
J Bioenerg Biomembr ; 40(6): 577-85, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19002576

RESUMO

The present investigation identifies the molecular basis for the well-documented inhibition of the mitochondrial inner membrane citrate transport protein (CTP) function by the lysine-selective reagent pyridoxal 5'-phosphate. Kinetic analysis indicates that PLP is a linear mixed inhibitor of the Cys-less CTP, with a predominantly competitive component. We have previously concluded that the CTP contains at least two substrate binding sites which are located at increasing depths within the substrate translocation pathway and which contain key lysine residues. In the present investigation, the roles of Lys-83 in substrate binding site one, Lys-37 and Lys-239 in substrate binding site two, and four other off-pathway lysines in conferring PLP-inhibition of transport was determined by functional characterization of seven lysine to cysteine substitution mutants. We observed that replacement of Lys-83 with cysteine resulted in a 78% loss of the PLP-mediated inhibition of CTP function. In contrast, replacement of either Lys-37 or Lys-239 with cysteine caused a modest reduction in the inhibition caused by PLP (i.e., 31% and 20% loss of inhibition, respectively). Interestingly, these losses of PLP-mediated inhibition could be rescued by covalent modification of each cysteine with MTSEA, a reagent that adds a lysine-like moiety (i.e. SCH(2)CH(2)NH(3) (+)) to the cysteine sulfhydryl group. Importantly, the replacement of non-binding site lysines (i.e., Lys-45, Lys-48, Lys-134, Lys-141) with cysteine resulted in little change in the PLP inhibition. Based upon these results, we conducted docking calculations with the CTP structural model leading to the development of a physical binding model for PLP. In combination, our data support the conclusion that PLP exerts its main inhibitory effect by binding to residues located within the two substrate binding sites of the CTP, with Lys-83 being the primary determinant of the total PLP effect since the replacement of this single lysine abolishes nearly all of the observed inhibition by PLP.


Assuntos
Proteínas de Transporte/química , Proteínas Fúngicas/metabolismo , Lisina/química , Mitocôndrias/metabolismo , Modelos Químicos , Modelos Moleculares , Fosfato de Piridoxal/química , Sítios de Ligação , Simulação por Computador , Ligação Proteica , Fosfato de Piridoxal/metabolismo , Relação Estrutura-Atividade
14.
J Biol Chem ; 282(23): 17210-20, 2007 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-17400551

RESUMO

The objective of the present investigation was to identify the substrate binding site(s) within the yeast mitochondrial citrate transport protein (CTP). Our strategy involved kinetically characterizing 30 single-Cys CTP mutants that we had previously constructed based on their hypothesized importance in the structure-based mechanism of this carrier. As part of these studies, a modified transport assay was developed that permitted, for the first time, the accurate determination of K(m) values that were elevated >100-fold compared with the Cys-less control value. We identified 10 single-Cys CTP mutants that displayed sharply elevated K(m) values (i.e. 5 to >300-fold). Each of these mutants displayed V(max) values that were reduced by > or = 98% and resultant catalytic efficiencies that were reduced by > or = 99.9%. Importantly, superposition of this functional data onto the three-dimensional homology-modeled CTP structure, which we previously had developed, revealed that nine of these ten residues form two topographically distinct clusters. Additional modeling showed that: (i) each cluster is capable of forming numerous hydrogen bonds with citrate and (ii) the two clusters are sufficiently distant from one another such that citrate is unlikely to interact with all of these residues at the same time. We deduced from these findings that the CTP contains at least two citrate binding sites per monomer, which are located at increasing depths within the translocation pathway. The identification of these sites, combined with an initial assessment of the citrate-amino acid side-chain interactions that may occur at these sites, substantially extends our understanding of CTP functioning at the molecular level.


Assuntos
Proteínas de Transporte/metabolismo , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Transporte/química , Cinética , Modelos Moleculares , Dados de Sequência Molecular
15.
Rev. bras. cir. cardiovasc ; 12(2): 197-207, abr.-jun. 1997. ilus, tab, graf
Artigo em Português | LILACS | ID: lil-193738

RESUMO

As operaçöes de aneurismas do arco aórtico dependem do tempo de parada circulatória hipotérmica total (PCH). Diversas técnicas têm sido propostas para melhorar a proteçäo do cérebro e estender o tempo seguro de isquemia (45 minutos em hipotermia profunda). A proteçäo cerebral durante duas horas de parada circulatória hipotérmica foi estudada em 23 suínos, divididos em quatro grupos. Nos grupos de controle, 8 animais foram submetidos a anestesia (Grupo 1) e a circulaçäo extracorpórea (Grupo 2). Os outros dois grupos foram à PCH associada à perfusäo cerebral anterógrada a 28 graus Celsius (Grupo 3) e a PCH associada a perfusäo retrógrada do cérebro a 28 graus Celsius (Grupo 4). A proteçäo cerebral foi avaliada pelo estudo histológico e pelo metabolismo celular cerebral estudado pela espectroscopia por ressonância nuclear magnética (RNM). Durante a PCH associada à perfusäo cerebral anterógrada a 28 graus Celsius, o metabolismo cerebral manteve-se normal durante todo o experimento e houve preservaçäo das estruturas cerebrais no estudo histológico. Na PCH com a perfusäo cerebral retrógrada a 28 graus Celsius, o pH intracelular, a fosfocreatina (Pcr) e o trifosfato de adenosina (ATP) diminuíram durante o período de parada circulatória e näo retornaram aos seus níveis normais durante a reperfusäo, permanecendo o cérebro em grave acidose intracelular. Concluímos que, durante duas horas de PCH, a perfusäo anterógrada a 28 graus Celsius proporcionou uma adequada proteçäo ao cérebro. A PCH associada à perfusäo retrógrada em hipotermia moderada a 28 graus Celsius näo porporcionou proteçäo cerebral, no estudo metabólico e histológico.


Assuntos
Animais , Masculino , Feminino , Cérebro/metabolismo , Parada Cardíaca Induzida , Hipotermia Induzida , Perfusão/métodos , Cérebro/fisiopatologia , Circulação Extracorpórea , Espectroscopia de Ressonância Magnética , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...