Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Anal Chem ; 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004811

RESUMO

Oligonucleotides represent a class of shorter DNA or RNA nucleic acid polymers extensively applied in the biomedical field. Despite progress in detecting and analyzing oligonucleotides, high-throughput analysis of the samples remains challenging. In this work, a high-throughput analysis method for oligonucleotide analysis was developed based on acoustic droplet ejection-open port interface-mass spectrometry (ADE-OPI-MS) technology. This approach was applied to determine the enzymatic activity of terminal deoxynucleotide transferase (TdT) for DNA synthesis, with a rate of 3 s/sample, which enhanced single-sample analysis efficiency approximately 60-fold over the previous gel analysis. After testing approximately 10,000 TdT mutants, we obtained three new variants with higher catalytic activities. Finally, by integrating these mutants, the catalytic activity of TdT was improved about 4 times compared to the starting mutant. Our results successfully established a high-throughput screening method for oligonucleotide analysis, which not only provides a foundation to engineer highly efficient TdT for ab initio synthesis of DNA but also paves the way for the potential application of oligonucleotide analysis in biomedical fields.

2.
Bioresour Bioprocess ; 11(1): 43, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38664309

RESUMO

L-Threonine is an important feed additive with the third largest market size among the amino acids produced by microbial fermentation. The GRAS (generally regarded as safe) industrial workhorse Corynebacterium glutamicum is an attractive chassis for L-threonine production. However, the present L-threonine production in C. glutamicum cannot meet the requirement of industrialization due to the relatively low production level of L-threonine and the accumulation of large amounts of by-products (such as L-lysine, L-isoleucine, and glycine). Herein, to enhance the L-threonine biosynthesis in C. glutamicum, releasing the aspartate kinase (LysC) and homoserine dehydrogenase (Hom) from feedback inhibition by L-lysine and L-threonine, respectively, and overexpressing four flux-control genes were performed. Next, to reduce the formation of by-products L-lysine and L-isoleucine without the cause of an auxotrophic phenotype, the feedback regulation of dihydrodipicolinate synthase (DapA) and threonine dehydratase (IlvA) was strengthened by replacing the native enzymes with heterologous analogues with more sensitive feedback inhibition by L-lysine and L-isoleucine, respectively. The resulting strain maintained the capability of synthesizing enough amounts of L-lysine and L-isoleucine for cell biomass formation but exhibited almost no extracellular accumulation of these two amino acids. To further enhance L-threonine production and reduce the by-product glycine, L-threonine exporter and homoserine kinase were overexpressed. Finally, the rationally engineered non-auxotrophic strain ZcglT9 produced 67.63 g/L (17.2% higher) L-threonine with a productivity of 1.20 g/L/h (108.0% higher) in fed-batch fermentation, along with significantly reduced by-product accumulation, representing the record for L-threonine production in C. glutamicum. In this study, we developed a strategy of reconstructing the feedback regulation of amino acid metabolism and successfully applied this strategy to de novo construct a non-auxotrophic L-threonine producing C. glutamicum. The main end by-products including L-lysine, L-isoleucine, and glycine were almost eliminated in fed-batch fermentation of the engineered C. glutamicum strain. This strategy can also be used for engineering producing strains for other amino acids and derivatives.

3.
Front Bioeng Biotechnol ; 11: 1282314, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37941722

RESUMO

Aspergillus niger is the main industrial workhorse for global citric acid production. This fungus has complex sensing and signaling pathways to respond to environmental nutrient fluctuations. As the preferred primary carbon source, glucose also acts as a critical signal to trigger intracellular bioprocesses. Currently, however, there is still a knowledge gap in systems-level understanding of metabolic and cellular responses to this vital carbon source. In this study, we determined genome-wide transcriptional changes of citric acid-producing Aspergillus niger in response to external glucose gradient. It demonstrated that external glucose fluctuation led to transcriptional reprogramming of many genes encoding proteins involved in fundamental cellular process, including ribosomal biogenesis, carbon transport and catabolism, glucose sensing and signaling. The major glucose catabolism repressor creA maintained a stable expression independent of external glucose, while creB and creD showed significant downregulation and upregulation by the glucose increase. Notably, several high-affinity glucose transporters encoding genes, including mstA, were greatly upregulated when glucose was depleted, while the expression of low-affinity glucose transporter mstC was glucose-independent, which showed clear concordance with their protein levels detected by in situ fluorescence labeling assay. In addition, we also observed that the citric acid exporter cexA was observed to be transcriptionally regulated by glucose availability, which was correlated with extracellular citric acid secretion. These discoveries not only deepen our understanding of the transcriptional regulation of glucose but also shed new light on the adaptive evolutionary mechanism of citric acid production of A. niger.

4.
J Magn Reson ; 355: 107546, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37797559

RESUMO

The photoexcited triplet states of porphyrins show great promise for applications in the fields of opto-electronics, photonics, molecular wires, and spintronics. The magnetic properties of porphyrin triplet states are most conveniently studied by time-resolved continuous wave and pulse electron spin resonance (ESR). This family of techniques is singularly able to probe small yet essential details of triplet states: zero-field splittings, g-anisotropy, spin polarisation, and hyperfine interactions. These characteristics are linked to spin-orbit coupling (SOC) which is known to have a strong influence on photophysical properties such as intersystem crossing rates. The present study explores SOC effects induced by the presence of Pd2+ in various porphyrin architectures. In particular, the impact of this relativistic interaction on triplet state fine-structure and spin polarisation is investigated. These properties are probed using time-resolved ESR complemented by electron-nuclear double resonance. The findings of this study could influence the future design of molecular spintronic devices. The Pd2+ ion may be incorporated into porphyrin molecular wires as a way of controlling spin polarisation.

5.
Front Bioeng Biotechnol ; 11: 1236118, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37654705

RESUMO

Heme is an important tetrapyrrole compound, and has been widely applied in food and medicine industries. Although microbial production of heme has been developed with metabolic engineering strategies during the past 20 years, the production levels are relatively low due to the multistep enzymatic processes and complicated regulatory mechanisms of microbes. Previous studies mainly adopted the strategies of strengthening precursor supply and product transportation to engineer microbes for improving heme biosynthesis. Few studies focused on the engineering and screening of efficient enzymes involved in heme biosynthesis. Herein, a growth-coupled, high-throughput selection platform based on the detoxification of Zinc-protoporphyrin IX (an analogue of heme) was developed and applied to directed evolution of coproporphyrin ferrochelatase, catalyzing the insertion of metal ions into porphyrin ring to generate heme or other tetrapyrrole compounds. A mutant with 3.03-fold increase in k cat/K M was selected. Finally, growth-coupled directed evolution of another three key enzymes involved in heme biosynthesis was tested by using this selection platform. The growth-coupled selection platform developed here can be a simple and effective strategy for directed evolution of the enzymes involved in the biosynthesis of heme or other tetrapyrrole compounds.

6.
Opt Express ; 31(16): 25515-25526, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37710436

RESUMO

We demonstrated all-silicon IQ modulators (IQMs) operating at 120-GBaud 16-QAM with suitable bandwidth, and output power. We required optical signal-to-noise-ratio (rOSNR) that have promising potential to be used in 800-Gbps small-form-factor pluggable transceivers for data center interconnection. First, we tested an IQM chip using discrete drivers and achieved a per-polarization TX output power of -18.74 dBm and an rOSNR of 23.51 dB over a 100-km standard SMF. Notably, a low BER of 1.4e-3 was obtained using our SiP IQM chip without employing nonlinear compensation, optical equalization, or an ultra-wide-bandwidth, high-ENOB OMA. Furthermore, we investigated the performance of a 3D packaged transmitter by emulating its frequency response using an IQM chip, discrete drivers, and a programmable optical filter. With a laser power of 17 dBm, we achieved a per-polarization output power of -15.64 dBm and an rOSNR of 23.35 dB.

7.
Nucleic Acids Res ; 51(16): 8623-8642, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37449409

RESUMO

Corynebacterium glutamicum is an important industrial workhorse for production of amino acids and chemicals. Although recently developed genome editing technologies have advanced the rational genetic engineering of C. glutamicum, continuous genome evolution based on genetic mutators is still unavailable. To address this issue, the DNA replication and repair machinery of C. glutamicum was targeted in this study. DnaQ, the homolog of ϵ subunit of DNA polymerase III responsible for proofreading in Escherichia coli, was proven irrelevant to DNA replication fidelity in C. glutamicum. However, the histidinol phosphatase (PHP) domain of DnaE1, the α subunit of DNA polymerase III, was characterized as the key proofreading element and certain variants with PHP mutations allowed elevated spontaneous mutagenesis. Repression of the NucS-mediated post-replicative mismatch repair pathway or overexpression of newly screened NucS variants also impaired the DNA replication fidelity. Simultaneous interference with the DNA replication and repair machinery generated a binary genetic mutator capable of increasing the mutation rate by up to 2352-fold. The mutators facilitated rapid evolutionary engineering of C. glutamicum to acquire stress tolerance and protein overproduction phenotypes. This study provides efficient tools for evolutionary engineering of C. glutamicum and could inspire the development of mutagenesis strategy for other microbial hosts.


Assuntos
Corynebacterium glutamicum , DNA Polimerase III , DNA Polimerase III/genética , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Replicação do DNA/genética , Mutação , Taxa de Mutação , Engenharia Metabólica
8.
Sheng Wu Gong Cheng Xue Bao ; 39(6): 2485-2501, 2023 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-37401605

RESUMO

Amino acids are the basic building blocks of protein that are very important to the nutrition and health of humans and animals, and widely used in feed, food, medicine and daily chemicals. At present, amino acids are mainly produced from renewable raw materials by microbial fermentation, forming one of the important pillar industries of biomanufacturing in China. Amino acid-producing strains are mostly developed through random mutagenesis- and metabolic engineering-enabled strain breeding combined with strain screening. One of the key limitations to further improvement of production level is the lack of efficient, rapid, and accurate strain screening methods. Therefore, the development of high-throughput screening methods for amino acid strains is very important for the mining of key functional elements and the creation and screening of hyper-producing strains. This paper reviews the design of amino acid biosensors and their applications in the high-throughput evolution and screening of functional elements and hyper-producing strains, and the dynamic regulation of metabolic pathways. The challenges of existing amino acid biosensors and strategies for biosensor optimization are discussed. Finally, the importance of developing biosensors for amino acid derivatives is prospected.


Assuntos
Aminoácidos , Técnicas Biossensoriais , Animais , Humanos , Engenharia Metabólica , Ensaios de Triagem em Larga Escala , China
10.
Synth Syst Biotechnol ; 8(3): 386-395, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37342805

RESUMO

Methanol is a promising one-carbon feedstock for biomanufacturing, which can be sustainably produced from carbon dioxide and natural gas. However, the efficiency of methanol bioconversion is limited by the poor catalytic properties of nicotinamide adenine dinucleotide (NAD+)-dependent methanol dehydrogenase (Mdh) that oxidizes methanol to formaldehyde. Herein, the neutrophilic and mesophilic NAD+-dependent Mdh from Bacillus stearothermophilus DSM 2334 (MdhBs) was subjected to directed evolution for enhancing the catalytic activity. The combination of formaldehyde biosensor and Nash assay allowed high-throughput and accurate measurement of formaldehyde and facilitated efficient selection of desired variants. MdhBs variants with up to 6.5-fold higher Kcat/KM value for methanol were screened from random mutation libraries. The T153 residue that is spatially proximal to the substrate binding pocket has significant influence on enzyme activity. The beneficial T153P mutation changes the interaction network of this residue and breaks the α-helix important for substrate binding into two short α-helices. Reconstructing the interaction network of T153 with surrounding residues may represent a promising strategy to further improve MdhBs, and this study provides an efficient strategy for directed evolution of Mdh.

11.
Biotechnol Biofuels Bioprod ; 16(1): 95, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268954

RESUMO

BACKGROUND: Filamentous fungi are used as industrial cell factories to produce a diverse portfolio of proteins, organic acids, and secondary metabolites in submerged fermentation. Generating optimized strains for maximum product titres relies on a complex interplay of molecular, cellular, morphological, and macromorphological factors that are not yet fully understood. RESULTS: In this study, we generate six conditional expression mutants in the protein producing ascomycete Aspergillus niger and use them as tools to reverse engineer factors which impact total secreted protein during submerged growth. By harnessing gene coexpression network data, we bioinformatically predicted six morphology and productivity associated 'morphogenes', and placed them under control of a conditional Tet-on gene switch using CRISPR-Cas genome editing. Strains were phenotypically screened on solid and liquid media following titration of morphogene expression, generating quantitative measurements of growth rate, filamentous morphology, response to various abiotic perturbations, Euclidean parameters of submerged macromorphologies, and total secreted protein. These data were built into a multiple linear regression model, which identified radial growth rate and fitness under heat stress as positively correlated with protein titres. In contrast, diameter of submerged pellets and cell wall integrity were negatively associated with productivity. Remarkably, our model predicts over 60% of variation in A. niger secreted protein titres is dependent on these four variables, suggesting that they play crucial roles in productivity and are high priority processes to be targeted in future engineering programs. Additionally, this study suggests A. niger dlpA and crzA genes are promising new leads for enhancing protein titres during fermentation. CONCLUSIONS: Taken together this study has identified several potential genetic leads for maximizing protein titres, delivered a suite of chassis strains with user controllable macromorphologies during pilot fermentation studies, and has quantified four crucial factors which impact secreted protein titres in A. niger.

12.
Angew Chem Int Ed Engl ; 62(33): e202306418, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316964

RESUMO

Two novel N-doped nonalternant nanoribbons (NNNR-1 and NNNR-2) featuring multiple fused N-heterocycles and bulky solubilizing groups were prepared via bottom-up solution synthesis. NNNR-2 achieves a total molecular length of 33.8 Å, which represents the longest soluble N-doped nonalternant nanoribbon reported to date. The pentagon subunits and doping of N atoms in NNNR-1 and NNNR-2 have successfully regulated their electronic properties, achieving high electron affinity and good chemical stability enabled by the nonalternant conjugation and electronic effects. When applied a laser pulse of 532 nm, the 13-rings nanoribbon NNNR-2 shows outstanding nonlinear optical (NLO) responses, with the nonlinear extinction coefficient of 374 cm GW-1 , much higher than those of NNNR-1 (96 cm GW-1 ) and the well-known NLO material C60 (153 cm GW-1 ). Our findings indicate that the N-doping of nonalternant nanoribbons is an effective strategy to access another type of excellent material system for high-performance NLO applications, which can be extended to construct numerous heteroatom-doped nonalternant nanoribbons with fine-tunable electronic properties.

13.
Biotechnol Biofuels Bioprod ; 16(1): 80, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37170167

RESUMO

BACKGROUND: Plant hemoglobin shows great potential as a food additive to circumvent the controversy of using animal materials. Microbial fermentation with engineered microorganisms is considered as a promising strategy for sustainable production of hemoglobin. As an endotoxin-free and GRAS (generally regarded as safe) bacterium, Corynebacterium glutamicum is an attractive host for hemoglobin biosynthesis. RESULTS: Herein, C. glutamicum was engineered to efficiently produce plant hemoglobin. Hemoglobin genes from different sources including soybean and maize were selected and subjected to codon optimization. Interestingly, some candidates optimized for the codon usage bias of Escherichia coli outperformed those for C. glutamicum regarding the heterologous expression in C. glutamicum. Then, saturated synonymous mutation of the N-terminal coding sequences of hemoglobin genes and fluorescence-based high-throughput screening produced variants with 1.66- to 3.45-fold increase in hemoglobin expression level. To avoid the use of toxic inducers, such as isopropyl-ß-D-thiogalactopyranoside, two native inducible expression systems based on food additives propionate and gluconate were developed. Promoter engineering improved the hemoglobin expression level by 2.2- to 12.2-fold. Combination of these strategies and plasmid copy number modification allowed intracellular production of hemoglobin up to approximately 20% of total protein. Transcriptome and proteome analyses of the hemoglobin-producing strain revealed the cellular response to excess hemoglobin accumulation. Several genes were identified as potential targets for further enhancing hemoglobin production. CONCLUSIONS: In this study, production of plant hemoglobin in C. glutamicum was systematically engineered by combining codon optimization, promoter engineering, plasmid copy number modification, and multi-omics-guided novel target discovery. This study offers useful design principles to genetically engineer C. glutamicum for the production of hemoglobin and other recombinant proteins.

14.
Anal Chem ; 95(11): 4829-4833, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36897266

RESUMO

With fast growth, synthetic biology powers us with the capability to produce high commercial value products in an efficient resource/energy-consuming manner. Comprehensive knowledge of the protein regulatory network of a bacterial host chassis, e.g., the actual amount of the given proteins, is the key to building cell factories for certain target hyperproduction. Many talent methods have been introduced for absolute quantitative proteomics. However, for most cases, a set of reference peptides with isotopic labeling (e.g., SIL, AQUA, QconCAT) or a set of reference proteins (e.g., commercial UPS2 kit) needs to be prepared. The higher cost hinders these methods for large sample research. In this work, we proposed a novel metabolic labeling-based absolute quantification approach (termed nMAQ). The reference Corynebacterium glutamicum strain is metabolically labeled with 15N, and a set of endogenous anchor proteins of the reference proteome is quantified by chemically synthesized light (14N) peptides. The prequantified reference proteome was then utilized as an internal standard (IS) and spiked into the target (14N) samples. SWATH-MS analysis is performed to obtain the absolute expression levels of the proteins from the target cells. The cost for nMAQ is estimated to be less than 10 dollars per sample. We have benchmarked the quantitative performance of the novel method. We believe this method will help with the deep understanding of the intrinsic regulatory mechanism of C. glutamicum during bioengineering and will promote the process of building cell factories for synthetic biology.


Assuntos
Corynebacterium glutamicum , Proteoma , Proteoma/análise , Corynebacterium glutamicum/metabolismo , Proteômica/métodos , Peptídeos/análise
15.
Biotechnol Biofuels Bioprod ; 16(1): 31, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36829220

RESUMO

BACKGROUND: 5-Aminolevulinic acid (5-ALA) is a promising biostimulant, feed nutrient, and photodynamic drug with wide applications in modern agriculture and therapy. Although microbial production of 5-ALA has been improved realized by using metabolic engineering strategies during the past few years, there is still a gap between the present production level and the requirement of industrialization. RESULTS: In this study, pathway, protein, and cellular engineering strategies were systematically employed to construct an industrially competitive 5-ALA producing Escherichia coli. Pathways involved in precursor supply and product degradation were regulated by gene overexpression and synthetic sRNA-based repression to channel metabolic flux to 5-ALA biosynthesis. 5-ALA synthase was rationally engineered to release the inhibition of heme and improve the catalytic activity. 5-ALA transport and antioxidant defense systems were targeted to enhance cellular tolerance to intra- and extra-cellular 5-ALA. The final engineered strain produced 30.7 g/L of 5-ALA in bioreactors with a productivity of 1.02 g/L/h and a yield of 0.532 mol/mol glucose, represent a new record of 5-ALA bioproduction. CONCLUSIONS: An industrially competitive 5-ALA producing E. coli strain was constructed with the metabolic engineering strategies at multiple layers (protein, pathway, and cellular engineering), and the strategies here can be useful for developing industrial-strength strains for biomanufacturing.

16.
Biosens Bioelectron ; 222: 115004, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36516630

RESUMO

Whole-cell biosensors based on transcriptional regulators are powerful tools for rapid measurement, high-throughput screening, dynamic metabolic regulation, etc. To optimize the biosensing performance of transcriptional regulator, its effector-binding domain is commonly engineered. However, this strategy is encumbered by the limitation of diversifying such a large domain and the risk of affecting effector specificity. Molecular dynamics simulation of effector binding of LysG (an LysR-type transcriptional regulator, LTTR) suggests the crucial role of the short linker helix (LH) connecting effector- and DNA-binding domains in protein conformational change. Directed evolution of LH efficiently produced LysG variants with extended operational range and unaltered effector specificity. The whole-cell biosensor based on the best LysGE58V variant outperformed the wild-type LysG in enzyme high-throughput screening and dynamic regulation of l-lysine biosynthetic pathway. LH mutations are suggested to affect DNA binding and facilitate transcriptional activation upon effector binding. LH engineering was also successfully applied to optimize another LTTR BenM for biosensing. Since LTTRs represent the largest family of prokaryotic transcriptional regulators with highly conserved structures, LH engineering is an efficient and universal strategy for development and optimization of whole-cell biosensors.


Assuntos
Técnicas Biossensoriais , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/química , Proteínas de Bactérias/genética , Domínios Proteicos , DNA/genética
17.
Front Bioeng Biotechnol ; 11: 1336215, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38234301

RESUMO

Allosteric regulation by pathway products plays a vital role in amino acid metabolism. Homoserine dehydrogenase (HSD), the key enzyme for the biosynthesis of various aspartate family amino acids, is subject to feedback inhibition by l-threonine and l-isoleucine. The desensitized mutants with the potential for amino acid production remain limited. Herein, a semi-rational approach was proposed to relieve the feedback inhibition. HSD from Corynebacterium glutamicum (CgHSD) was first characterized as a homotetramer, and nine conservative sites at the tetramer interface were selected for saturation mutagenesis by structural simulations and sequence analysis. Then, we established a high-throughput screening (HTS) method based on resistance to l-threonine analog and successfully acquired two dominant mutants (I397V and A384D). Compared with the best-ever reported desensitized mutant G378E, both new mutants qualified the engineered strains with higher production of CgHSD-dependent amino acids. The mutant and wild-type enzymes were purified and assessed in the presence or absence of inhibitors. Both purified mutants maintained >90% activity with 10 mM l-threonine or 25 mM l-isoleucine. Moreover, they showed >50% higher specific activities than G378E without inhibitors. This work provides two competitive alternatives for constructing cell factories of CgHSD-related amino acids and derivatives. Moreover, the proposed approach can be applied to engineering other allosteric enzymes in the amino acid synthesis pathway.

18.
ACS Synth Biol ; 11(10): 3368-3378, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36099191

RESUMO

Expanding the base conversion type is expected to largely broaden the application of base editing, whereas it requires decipherment of the machinery controlling the editing outcome. Here, we discovered that the DNA polymerase V-mediated translesion DNA synthesis (TLS) pathway controlled the C-to-A editing by a glycosylase base editor (GBE) in Escherichia coli. However, C-to-G conversion was surprisingly found to be the main product of the GBE in Corynebacterium glutamicum and subsequent gene inactivation identified the decisive TLS enzymes. Introduction of the E. coli TLS pathway into a TLS-deficient C. glutamicum mutant completely changed the GBE outcome from C-to-G to C-to-A. Combining the canonical C-to-T editor, a pioneering C-to-N base editing toolbox was established in C. glutamicum. The expanded base conversion capability produces greater genetic diversity and promotes the application of base editing in gene inactivation and protein evolution. This study demonstrates the possibility of engineering TLS systems to develop advanced genome editing tools.


Assuntos
Corynebacterium glutamicum , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Sistemas CRISPR-Cas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Edição de Genes , DNA Polimerase Dirigida por DNA/genética , DNA/metabolismo
19.
J Fungi (Basel) ; 8(6)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35736051

RESUMO

Aspergillus niger is an important industrial workhorse for the biomanufacturing of organic acids, proteins, etc. Well-controlled genetic regulatory elements, including promoters, are vital for strain engineering, but available strong promoters for A. niger are limited. Herein, to efficiently assess promoters, we developed an accurate and intuitive fluorescent-auxotrophic selection workflow based on mCherry, pyrG, CRISPR/Cas9 system, and flow cytometry. With this workflow, we characterized six endogenous constitutive promoters in A. niger. The endogenous glyceraldehyde-3-phosphate dehydrogenase promoter PgpdAg showed a 2.28-fold increase in promoter activity compared with the most frequently used strong promoter PgpdAd from A. nidulans. Six predicted conserved motifs, including the gpdA-box, were verified to be essential for the PgpdAg activity. To demonstrate its application, the promoter PgpdAg was used for enhancing the expression of citrate exporter cexA in a citric acid-producing isolate D353.8. Compared with the cexA controlled by PgpdAd, the transcription level of the cexA gene driven by PgpdAg increased by 2.19-fold, which is consistent with the promoter activity assessment. Moreover, following cexA overexpression, several genes involved in carbohydrate transport and metabolism were synergically upregulated, resulting in up to a 2.48-fold increase in citric acid titer compared with that of the parent strain. This study provides an intuitive workflow to speed up the quantitative evaluation of A. niger promoters and strong constitutive promoters for fungal cell factory construction and strain engineering.

20.
Biochem Biophys Res Commun ; 609: 100-104, 2022 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-35427926

RESUMO

5-ALA is the precursor of all tetrapyrroles. 5-Aminolevulinate synthase (ALAS) catalyzes the production of 5-aminolevulinic acid (5-ALA) from glycine and succinyl-CoA. HemA from Rhodopseudomonas palustris (Rp-HemA) was reported to be a highly active ALAS. To understand the catalytic mechanism of Rp-HemA, the 2.05 Å resolution crystal structure of Rp-HemA was solved. Open, half close and close conformations were observed in the substrate-free structures. Structure comparison and sequence alignment suggest the newly observed half close conformation may also be conserved in ALAS family. The pre-existed close and half close conformations in Rp-HemA may play a key role for its high activity.


Assuntos
5-Aminolevulinato Sintetase , Rodopseudomonas , 5-Aminolevulinato Sintetase/química , Ácido Aminolevulínico , Glicina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...