Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tumour Biol ; 37(2): 2509-18, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26385773

RESUMO

Triple-negative breast cancer (TNBC) is a unique breast cancer subtype with high heterogeneity and poor prognosis. Currently, the treatment effect of TNBC has reached a bottleneck, rendering new breakthroughs difficult. Cancer invasion is not an entirely cell-autonomous process, requiring the cells to transmigrate across the surrounding extracellular matrix (ECM) barriers. Developing a new system that integrates key constituents in the tumor microenvironment with pivotal cancer cell molecules is essential for the in-depth investigation of the mechanism of invasion in TNBC. We describe a computer-aided algorithm developed using quantum dot (QD)-based multiplex molecular imaging of TNBC tissues. We performed in situ simultaneous imaging and quantitative detection of epidermal growth factor receptor (EGFR), expressed in the TNBC cell membrane, and collagen IV, the major ECM constituent; calculated the EGFR/collagen IV ratio; and investigated the prognostic value of the EGFR/collagen IV ratio in TNBC. We simultaneously imaged and quantitatively detected EGFR and collagen IV in the TNBC samples. In all patients, quantitative determination showed a statistically significant negative correlation between EGFR and collagen IV. The 5-year disease-free survival (5-DFS) of the high and low EGFR/collagen IV ratio subgroups was significantly different. The EGFR/collagen IV ratio was predictive and was an independent prognostic indicator in TNBC. Compared with EGFR expression, the EGFR/collagen IV ratio had a greater prognostic value for 5-DFS. Our findings open up a new avenue for predicting the clinical outcome in TNBC from the perspective of integrating molecules expressed in both cancer cells and the ECM.


Assuntos
Colágeno Tipo IV/metabolismo , Receptores ErbB/metabolismo , Pontos Quânticos/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Adulto , Idoso , Membrana Celular/metabolismo , Membrana Celular/patologia , Intervalo Livre de Doença , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Humanos , Pessoa de Meia-Idade , Imagem Molecular/métodos , Prognóstico , Microambiente Tumoral/fisiologia
2.
Int J Nanomedicine ; 9: 1039-48, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24591826

RESUMO

BACKGROUND: Hormone receptors, including the estrogen receptor and progesterone receptor, human epidermal growth factor receptor 2 (HER2), and other biomarkers like Ki67, epidermal growth factor receptor (EGFR, also known as HER1), the androgen receptor, and p53, are key molecules in breast cancer. This study evaluated the relationship between HER2 and hormone receptors and explored the additional prognostic value of Ki67, EGFR, the androgen receptor, and p53. METHODS: Quantitative determination of HER2 and EGFR was performed in 240 invasive breast cancer tissue microarray specimens using quantum dot (QD)-based nanotechnology. We identified two subtypes of HER2, ie, high total HER2 load (HTH2) and low total HER2 load (LTH2), and three subtypes of hormone receptor, ie, high hormone receptor (HHR), low hormone receptor (LHR), and no hormone receptor (NHR). Therefore, breast cancer patients could be divided into five subtypes according to HER2 and hormone receptor status. Ki67, p53, and the androgen receptor were determined by traditional immunohistochemistry techniques. The relationship between hormone receptors and HER2 was investigated and the additional value of Ki67, EGFR, the androgen receptor, and p53 for prediction of 5-year disease-free survival was assessed. RESULTS: In all patients, quantitative determination showed a statistically significant (P<0.001) negative correlation between HER2 and the hormone receptors and a significant positive correlation (P<0.001) between the estrogen receptor and the progesterone receptor (r=0.588), but a significant negative correlation (P<0.001, r=-0.618) with the HHR subtype. There were significant differences between the estrogen receptor, progesterone receptor, and HER2 subtypes with regard to total HER2 load and hormone receptor subtypes. The rates of androgen receptor and p53 positivity were 46.3% and 57.0%, respectively. Other than the androgen receptor, differences in expression of Ki67, EGFR, and p53 did not achieve statistical significance (P>0.05) between the five subtypes. EGFR and Ki67 had prognostic significance for 5-year disease-free survival in univariate analysis, but the androgen receptor and p53 did not. Multivariate analysis identified that EGFR expression had predictive significance for 5-year disease-free survival in hormone-receptor positive patients and in those with the lymph node-positive breast cancer subtype. CONCLUSION: Hormone receptor expression was indeed one of the molecular profiles in the subtypes identified by quantitative HER2 and vice versa. EGFR status may provide discriminative prognostic information in addition to HER2 and hormone receptor status, and should be integrated into routine practice to help formulate more specific prediction of the prognosis and appropriate individualized treatment.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/classificação , Neoplasias da Mama/metabolismo , Receptores ErbB/metabolismo , Feminino , Humanos , Antígeno Ki-67/metabolismo , Nanomedicina , Nanotecnologia , Prognóstico , Pontos Quânticos , Receptor ErbB-2/metabolismo , Receptores Androgênicos/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , Proteína Supressora de Tumor p53/metabolismo
3.
Int J Nanomedicine ; 9: 1339-46, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24648732

RESUMO

BACKGROUND: The immunohistochemical assessment of Ki67 antigen (Ki67) is the most widely practiced measurement of breast cancer cell proliferation; however, it has some disadvantages and thus the prognostic value of Ki67 in breast cancer remains controversial. Our previous studies confirmed the advantages of quantum dots-based nanotechnology for quantitative analysis of biomarkers compared with conventional immunohistochemistry (IHC). This study was designed to assess Ki67 by quantum dot-immunohistochemistry (QD-IHC) and investigate the prognostic value of the Ki67 score in human epidermal growth factor receptor 2 (HER2)-positive (non-luminal) breast cancer. METHODS: Ki67 expression in 108 HER2-positive (non-luminal) breast cancer specimens was detected by IHC and QD-IHC. Two observers assessed the Ki67 score independently and comparisons between the two methods were made. The prognostic value of the Ki67 score for five-year disease-free survival was estimated. RESULTS: The same antigen localization, high correlation of staining rates (r=0.993), and high agreement of measurements (κ=0.874) of Ki67 expression (cutoff: 30%) in breast cancer were found by QD-IHC and conventional IHC. The QD-IHC had a better interobserver agreement for the Ki67 score than conventional IHC (t=-7.280, P<0.01). High Ki67 expression (cutoff: 30%) was associated with shorter disease-free survival (log-rank test; IHC, P=0.026; QD-IHC, P=0.001), especially in the lymph node-negative subgroups (log-rank test; IHC, P=0.017; QD-IHC, P=0.002). CONCLUSION: QD-IHC imaging of Ki67 was an easier and more accurate method for detecting and assessing Ki67. The Ki67 score was an independent prognosticator in the HER2-positive (non-luminal) breast cancer patients.


Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias da Mama/metabolismo , Antígeno Ki-67/metabolismo , Pontos Quânticos , Receptor ErbB-2/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Intervalo Livre de Doença , Feminino , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , Nanomedicina , Nanotecnologia , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...