Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6590, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37852952

RESUMO

Electrocatalytic oxidation offers opportunities for sustainable environmental remediation, but it is often hampered by the slow mass transfer and short lives of electro-generated radicals. Here, we achieve a four times higher kinetic constant (18.9 min-1) for the oxidation of 4-chlorophenol on the reactive electrochemical membrane by reducing the pore size from 105 to 7 µm, with the predominate mechanism shifting from hydroxyl radical oxidation to direct electron transfer. More interestingly, such an enhancement effect is largely dependent on the molecular structure and its sensitivity to the direct electron transfer process. The spatial distributions of reactant and hydroxyl radicals are visualized via multiphysics simulation, revealing the compressed diffusion layer and restricted hydroxyl radical generation in the microchannels. This study demonstrates that both the reaction kinetics and the electron transfer pathway can be effectively regulated by the spatial confinement effect, which sheds light on the design of cost-effective electrochemical platforms for water purification and chemical synthesis.

2.
ACS Nano ; 17(13): 12629-12640, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37350330

RESUMO

Dehydration is a basic phenomenon in ion transport through confined nanochannels, but how it affects ion trans-membrane selectivity has not been understood due to a lack of characterization techniques and suitable pore structures. Herein, hydration number distributions of typical alkali metal ions were characterized by combining uniform subnanochannels of ZIF-8-based membranes with the in situ liquid time-of-flight secondary ion mass spectrometry (ToF-SIMS) technique, revealing that steric hindrance induced ion dehydration through neutral confined ZIF-8 windows. The reduction in size due to partial dehydration increased the intrapore velocity for monovalent cations. The highest entropy value with maximum size changes resulting from dehydration drove fast and efficient selective transport of Li+ over other alkaline metal ions, leading to a Li+/Rb+ selectivity of 5.2. The dehydration at the entrance of membrane pores was shown to account for the majority of overall barriers, being a dominant element for ion transport. High hydration energy (>1500 kJ/mol) hindered the dehydration and transport of typical alkaline earth metal ions, achieving ultrahigh monovalent/bivalent cation selectivity (∼104). These findings uncover the crucial role of dehydration energy barriers and size-based entropy barriers in ion selectivity of trans-subnanochannel transport, providing guidelines for designing selective membranes with specific pore sizes to promote the dehydration of desired solutes.

3.
J Environ Manage ; 333: 117416, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36758403

RESUMO

Electrocoagulation (EC) is a promising alternative for decentralized drinking water treatment in rural areas as a chemical-free technology. However, seasonal fluctuations of water quality in influent remain a significant challenge for rural decentralized water supply, which was a potential threat to water safety. The frequent operation was required to ensure the effluent water quality by the experienced technicians, who were in shortage in rural areas. If the operational parameters prediction model based on water quality could be established, it might reduce the dependence on technicians. Therefore, an artificial neural network (ANN) model combined with genetic algorithm (GA) was used to establish a prediction model for unattended intelligent operation. Data on water quality and operational parameters were collected from a practical EC system in a decentralized water treatment plant. Seven water quality parameters (e.g., turbidity, temperature, pH and conductivity) were selected as input variables and the operational current was employed as the output. A non-linear relationship between water quality parameters and the operational current was verified by correlation analysis and principal component analysis (PCA). The mean squared error (MSE) and coefficient of determination (R2) were used as evaluation indexes to optimize the structure of the GA-ANN model. Influent turbidity was identified to be crucial in the GA-ANN model by model interpretation using sensitivity analysis and scenario analysis. The Garson weight of turbidity in the seven input variables achieved 45.4%. The predictive accuracy of the GA-ANN model sharply declined from 90% to 67.1% when influent turbidity data were absent. In addition, it was estimated that energy consumption savings of the GA-ANN method declined by 14.2% in comparison with the gradient control method. This study verifies the feasibility and stability of machine learning strategy for unattended operation in the rural decentralized water treatment plant.


Assuntos
Redes Neurais de Computação , Purificação da Água , Qualidade da Água , Purificação da Água/métodos , Eletrocoagulação , Aprendizado de Máquina
4.
Environ Sci Technol ; 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36630187

RESUMO

Antibacterial modification is a chemical-free method to mitigate biofouling, but surface accumulation of bacteria shields antibacterial groups and presents a significant challenge in persistently preventing membrane biofouling. Herein, a great synergistic effect of electrorepulsion and quaternary ammonium (QA) inactivation on maintaining antibacterial activity against biofouling has been investigated using an electrically conductive QA membrane (eQAM), which was fabricated by polymerization of pyrrole with QA compounds. The electrokinetic force between negatively charged Escherichia coli and cathodic eQAM prevented E. coli cells from reaching the membrane surface. More importantly, cathodic eQAM accelerated the detachment of cells from the eQAM surface, particularly for dead cells whose adhesion capacity was impaired by inactivation. The number of dead cells on the eQAM surface was declined by 81.2% while the number of live cells only decreased by 49.9%. Characterization of bacteria accumulation onto the membrane surface using an electrochemical quartz crystal microbalance revealed that the electrorepulsion accounted for the cell detachment rather than inactivation. In addition, QA inactivation mainly contributed to minimizing the cell adhesion capacity. Consequently, the membrane fouling was significantly declined, and the final normalized water flux was promoted higher than 20% with the synergistic effect of electrorepulsion and QA inactivation. This work provides a unique long-lasting strategy to mitigate membrane biofouling.

5.
Anticancer Agents Med Chem ; 23(3): 317-327, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35331099

RESUMO

OBJECTIVE: Peimine (PM) is a bioactive compound obtained from Fritillaria. It has been documented that PM exhibits potent antitumor properties against multiple cancers. However, the antitumor properties of PM in breast cancer and its associated mechanisms have not been clarified. METHODS: Proliferation and apoptosis of MCF-7 and MCF-10A cells were detected by CCK8, colony formation, and flow cytometry assays. Cytotoxicity was measured by Lactate dehydrogenase (LDH) leakage assay. The level of IL-1ß and IL-18 were detected with ELISA kits. Western blotting and real-time Polymerase Chain Reaction were performed to analyze the expression of proteins and genes related to the NLRP3 inflammasome pathway and Endoplasmic reticulum stress. RESULTS: The doses of PM (5, 10, and 20 µM) inhibited cell viability significantly, apoptotic induction, and inflammasome activation in breast cancer cells in vitro. Inflammasome components were decreased, including the apoptosisassociated speck like protein containing a CARD (ASC) and NOD-like receptor pyrindomain-containing protein3 (NLRP3), as well as the inhibition of caspase-1 and interleukin-1ß activation. Moreover, inflammasome inhibitors suppressed cell growth and induced apoptosis, implying that PM suppresses the growth of breast cancer cells through regulating inflammasome. Mechanistically, PM inhibited the activity of inflammasome by alleviating endoplasmic reticulum (ER) stress and by down-regulating the expression of multiple proteins in transcription factor nuclear factor- κB (NF-κB) and mitogen-activated protein kinases (MAPKs) signaling pathways. CONCLUSION: These findings show that PM suppresses the growth of breast cancer cells by inhibiting inflammasome activation, to a certain extent, by primarily acting on the MAPK/NF-κB pathway's inactivation-dependent mechanisms.


Assuntos
Neoplasias da Mama , Inflamassomos , Humanos , Feminino , Inflamassomos/genética , Inflamassomos/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Células MCF-7 , Neoplasias da Mama/tratamento farmacológico
6.
Environ Res ; 218: 114987, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36462694

RESUMO

Selective separation of nitrate over chloride is crucial for eutrophication mitigation and nitrogen resource recovery but remains a challenge due to their similar ionic radius and the same valence. Herein, a polypyrrole membrane electrode (PME) was fabricated by polymerization of pyrrole (Py) and p-toluenesulfonate (pTS), which was used as a working electrode in redox transistor electrodialysis. The anions in the source solution were first incorporated into the PME at reduction potentials and then released to receiving solution at oxidation potentials. Pulse widths and potentials were optimized to maximize the ion separation performance of PME, resulting in the improvement of NO3-/Cl- separation factor up to 6.93. The ion distributions in various depths of PME indicated that both NO3- and Cl- were incorporated into PME at negative potentials. Then, NO3- was preferentially released from PME at positive potentials, but most Cl- was retained. This was ascribed to the high binding energy between Cl- and PPy/pTS structure, which was 51.4% higher than that between NO3- and PPy/pTS structure. Therefore, the higher transport rate of NO3- in comparison with Cl- was achieved, leading to a high NO3- selectivity over Cl-. This work provides a promising avenue for the selective separation of nitrate over chloride, which may contribute to nitrogen resource recycling and reuse.


Assuntos
Cloretos , Nitratos , Polímeros/química , Pirróis/química , Ânions , Eletrodos , Oxirredução
7.
Water Res ; 223: 118966, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35973250

RESUMO

Electrode passivation is the most challenging technical problem in electrocoagulation (EC) water treatment process, but research on understanding and mitigating passivation evolution are still lacking. Herein, homogenization of current density (CD) distribution was found to be a critical factor in alleviating the anode passivation during EC process. Decreasing electrode area decelerated the growth of passivation layer on anode through homogenizing CD distribution, which was quantified by the ratios of CD distributed at the electrode edges and centers. When aluminum anode area decreased from 8 cm2 to 2 cm2 with a constant CD, the homogenization degree increased by 24.0%, and passivation was reduced by 24.3%. The depth profiles of passivated anodes confirmed the inhomogeneity of the anode passivation. Thicker passivation layers were observed at edges due to high CD distributions, which originated from the "edge effect" of electric field distribution between parallel plate electrodes. A facile strategy to homogenize CD distribution by splitting electrodes into smaller electrodes is then proposed for passivation mitigation, which can save energy consumption by 21.8% with unchanged removal efficiency. This study provides a unique insight into anode passivation mitigation and a feasible electrode design in EC.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Alumínio , Eletricidade , Eletrocoagulação , Eletrodos
8.
Water Res ; 217: 118378, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35381555

RESUMO

Membrane reactors with efficient antifouling and low maintenance are desirable for distributed membrane water treatment. In this study, a novel membrane separation reactor with an Al anode and a conductive membrane as the cathode was built to develop a chemical-free method for mitigating membrane fouling via electrocoagulation coupled with the electrokinetic effect. The electrostatic repulsion between humic acid (HA) and the membrane cathode reduced the adhesion of HA foulants on the membrane, thereby contributing to antifouling in the initial stage. Electrocoagulation and polarization induced by the electric field enlarged the HA-Al flocs, which prevented membrane pore blocking and facilitated the formation of a porous cake layer, thereby leading to a high water flux of the electrocoagulation membrane cathode reactor (ECMCR) in the stable stage. The bubbles from hydrogen evolution on the membrane cathode scoured the HA foulants and washed out the dense cake layer, thereby playing an important role in membrane fouling mitigation. Compared with membrane filtration, the membrane cathode reactor, membrane anode reactor, and HA removal of the ECMCR increased by 9.6, 8.3, and 2.8 times, respectively, whereas the transmembrane pressure decreased by 84.6%, 21.5%, and 63.0%, respectively. The synergy of electrocoagulation and the electrokinetic effect provides the ECMCR with a feasible method of antifouling and improved effluent quality with low maintenance.


Assuntos
Membranas Artificiais , Purificação da Água , Eletrocoagulação , Eletrodos , Substâncias Húmicas , Purificação da Água/métodos
9.
J Environ Sci (China) ; 118: 171-180, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35305766

RESUMO

Surfactants are widely used to improve the solubility of oil in water in petrochemical, making it more difficult to remove oil-water emulsions during the water treatment process. Electrocoagulation (EC) is an appropriate method for treating oily wastewater and destabilizing emulsions. However, the demulsification mechanism of oil-water droplets emulsified by surfactants with different charges have not been investigated systematically. The demulsification performance of electrocoagulation on emulsions wastewater containing cationic, non-ionic, and anionic surfactants was studied. The results showed that the removal rate of total organic carbon (TOC) in oily wastewater with anionic surfactant by EC reached 92.98% ± 0.40% at a current density of 1 mA/cm2, while that of the non-ionic surfactant was 84.88% ± 0.63%. The characterization of flocs showed that EC has the highest coagulation and demulsification of oil droplets with a negative charge on the surface (-70.50 ± 10.25 mV), which indicated that the charge neutralization of oil droplets was beneficial for the destabilization of the formed oily flocs. However, when the zeta potential of the oil droplets reached 75.50 ± 1.25 mV, the TOC removal efficiency was only 11.80% ± 1.43%. The TOC removal could achieve 33.23% ± 3.21% when the current density improved from 1 mA/cm2 to 10 mA/cm2. The enhanced removal was due to the sweep coagulation rather than charge neutralization. This study provides a fundamental basis for the electrochemical treatment of oily wastewater.


Assuntos
Surfactantes Pulmonares , Purificação da Água , Eletrocoagulação , Emulsões/química , Tensoativos/química , Purificação da Água/métodos
10.
Sci Total Environ ; 804: 150101, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34517320

RESUMO

Adding magnesium ions (Mg2+) to produce struvite is an important method to recover nitrogen and phosphorus from wastewater. Both the Mg2+ source and subsequent separation of struvite are key factors for the utilization of struvite. In this study, we developed an efficient method to recover nutrient salts from wastewater using sacrificial Mg anodes to generate struvite, with its simultaneous separation through cathode electrodeposition. The anode-released Mg2+ reacted with NH4+-N and PO43--P in bulk solution to form struvite, which was more intense on the cathode surface due to the relatively higher pH environment from hydrogen evolution, resulting in most of the struvite being deposited on the cathode surface and simultaneously separated out of the bulk solution. Using a cathode with a higher solution-cathode interface area and relatively low current density facilitated struvite deposition. Results showed that under optimal electrolysis condition (5.76 A/m2, pH 8.5, 180 min, and 1.2:1.0 Mg:P), 91% of the undissolved substances as the phosphate precipitation were deposited on the graphite cathode surface, and the proportion of struvite in the deposition reached 41.52%. This study provides a novel electrochemical method for struvite synthesis and separation for the recovery of nitrogen and phosphorus from wastewater.


Assuntos
Galvanoplastia , Magnésio , Eletrodos , Fósforo , Estruvita
11.
J Hazard Mater ; 422: 126778, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34391971

RESUMO

Directive, acid and reactive dyes are the carcinogenic dyes which have complex structures and difficult to remove from the industrial wastewater. In this study, coal fly ash (CFA) was modified with HCl and NaOH solution and used for the removal of direct fast scarlet 4BS, direct sky blue 5B, acid navy blue R, and reactive turquoise blue KN-G dyes. Laboratory experiments were carried out to analyze the performance of modified coal fly ash (MCFA) to check the removal efficiency and adsorption capacity of dyes. The maximum removal efficiency of direct fast scarlet 4BS and direct sky blue 5B were recorded 96.03% and 93.820%, respectively using 0.05 g adsorbent dosage at 100 mg/L initial concentration. The results of MCFA were compared with carbon black, chitosan, starch, zeolite and unmodified coal fly ash (UMCFA) at lower dosage 0.05 g and higher dosage 0.4 g. Adsorption isotherm were analyzed by Langmuir and Freundlich model by different dyes concentrations, the result stated that Freundlich and Langmuir model (±0.9918, ±0.9974) was fitted by chemisorption and physisorption methods for all four dyes. Adsorption kinetic were also determined by Pseudo-first-order and Pseudo-second-order at different contact times with dye molecules and adsorbent active sites, and the results showed that the adsorption behaviors of all four dyes were described better by pseudo-second-order kinetics than pseudo-first-order kinetics. Recommended dosage of modified fly ash is between 10 ‱ to 20 ‱ for simulated textile industrial waste water and regeneration temperature is 300 â„ƒ.


Assuntos
Cinza de Carvão , Poluentes Químicos da Água , Adsorção , Carvão Mineral , Corantes , Concentração de Íons de Hidrogênio , Cinética
12.
J Am Chem Soc ; 143(35): 14242-14252, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34431669

RESUMO

The transport of hydrated ions across nanochannels is central to biological systems and membrane-based applications, yet little is known about their hydrated structure during transport due to the absence of in situ characterization techniques. Herein, we report experimentally resolved ion dehydration during transmembrane transport using modified in situ liquid ToF-SIMS in combination with MD simulations for a mechanistic reasoning. Notably, complete dehydration was not necessary for transport to occur across membranes with sub-nanometer pores. Partial shedding of water molecules from ion solvation shells, observed as a decrease in the average hydration number, allowed the alkali-metal ions studied here (lithium, sodium, and potassium) to permeate membranes with pores smaller than their solvated size. We find that ions generally cannot hold more than two water molecules during this sterically limited transport. In nanopores larger than the size of the solvation shell, we show that ionic mobility governs the ion hydration number distribution. Viscous effects, such as interactions with carboxyl groups inside the membrane, preferentially hinder the transport of the mono- and dihydrates. Our novel technique for studying ion solvation in situ represents a significant technological leap for the nanofluidics field and may enable important advances in ion separation, biosensing, and battery applications.


Assuntos
Transporte de Íons , Lítio/química , Potássio/química , Sódio/química , Água/química , Dispositivos Lab-On-A-Chip , Membranas Artificiais , Microfluídica/instrumentação , Nylons/química , Viscosidade
13.
Chemosphere ; 283: 131123, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34182630

RESUMO

Electrocoagulation (EC) is an efficient technology for removing oil-in-water (O/W) emulsions. However, the role of the electric field in EC for demulsification remains unclear and an obstacle for improving reactor design and operation. Herein, demulsification and oil removal performance by EC under different electric field conditions were investigated. Increasing the EC electric field intensity was beneficial for oil removal, and tandem EC had a higher electric field intensity than parallel EC under the same current density. When the current density was 0.67 mA cm-2, the chemical oxygen demand (COD) removal rates of tandem EC and parallel EC were 1 136.47 and 745.99 g COD kWh-1, respectively. Oil droplets were polarized by the electric field, and then aligned and aggregated parallel to the direction of the electric field. Increasing electric field intensity accelerated the aggregation of oil droplets, as verified by physical fluid simulation. Furthermore, results showed a higher Al3+ dosage and larger electric field intensity in EC with increasing current density, which was conducive to oil droplet demulsification. These findings provide insight into and a theoretical basis for improving oil removal by EC processes.


Assuntos
Eletrocoagulação , Análise da Demanda Biológica de Oxigênio
14.
J Colloid Interface Sci ; 590: 539-547, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33571848

RESUMO

Capacitive deionization (CDI), or electrosorption, is a desalination technology that exhibits significant potential; however, its major technical requirement of selective ion separation poses a challenge for its further practical application. Herein, a titanium carbide (MXene)-layered electrosorption electrode with high selectivity for Ca2+ was fabricated. The prepared MXene electrode had many surface hydroxyl functional groups that serve as adsorption sites for Ca2+. Ca2+ was successfully inserted into the interlayers of the MXene cathode and formed a strong interaction with [Ti-O] bonds during the capacitive deionization process. When a Ni-Al layered metal oxide anion intercalation electrode was employed as the counter electrode, Ca2+ adsorption by the MXene electrode was significantly enhanced due to the valence compensation balance effect. The maximum Ca2+ electrosorption capacity of the MXene electrode reached 1011.82 mg per gram effective MXene material, which is 6.3 times higher than that of Na+ based on the Langmuir adsorption isotherm model. The MXene electrode exhibited prominent selectivity for Ca2+ ions in the presence of Na+ and Mg2+. The Ca2+/Mg2+ selectivity factor for electrosorption reached 2.63, and Ca2+/Na+ selectivity factor could achieve 9.84, respectively. After five electrosorption/desorption cycles, the Ca2+ removal rate only decreased from 46.96% to 45.34%, suggesting that the MXene electrode has excellent stability. Our study demonstrated a novel CDI electrode and technical approach for softening water.

15.
Chemosphere ; 270: 129416, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33388500

RESUMO

Conductive membranes provide a promising method to alleviate membrane fouling, but their cost-effective fabrication, which is urgently needed, is still a challenge. This paper describes the facile fabrication of an ultrafiltration conductive polypyrrole (PPy)-modified membrane (PMM) by in situ chemical polymerization of FeCl3 and monomer pyrrole vapor on a commercial membrane surface. The resulting membrane had a high electrical conductivity and an outstanding water flux of 2766.55 L m-2 h-1 bar-1. The preparation cost of the PPy deposition was $2.22/m2, which was ∼8% of the commercial ultrafiltration membrane cost. Once the PMM was charged at -1 V as a membrane electrode, the normalized water flux was maintained at 92.48 ± 1.14% after fouling by bovine serum albumin (BSA) solutions, which was 18.82% higher than that when the PMM was not charged. The reduced membrane fouling was ascribed to the electrical repulsion between the negatively charged BSA and the PMM cathode. In addition, hydroxyl and sulfate radicals were generated by peroxymonosulfate (PMS) activation on the PMM surface through electron transfer by PPy, which facilitated foulant oxidation. The PPy on the PMM surface was oxidized after catalysis and electrochemically reduced when the PMM was charged as a cathode, exhibiting continuous catalytic ability for PMS activation. These findings provide an alternative method for the facile fabrication of cost-effective conductive membranes to mitigate membrane fouling.


Assuntos
Polímeros , Pirróis , Condutividade Elétrica , Membranas Artificiais , Ultrafiltração
16.
Artigo em Inglês | MEDLINE | ID: mdl-33312221

RESUMO

In this study, we aimed to evaluate the suppressive abilities of berberine (BBR) on MCF-7 and MDA-MB-231 cells and confirm its underlying mechanisms on miR-214-3p. We first built a panel of 18 miRNAs and 9 lncRNAs that were reported to participate in the mechanism of breast cancer. The RT-qPCR results suggested that BBR illustrated a dosage-dependent pattern in the stimulation to miR-214-3p in both MCF-7 and MDA-MB-231 cells. Then, we performed gain-and-lose function tests to validate the role of miR-214-3p contributing to the anticancer effects of BBR. Both BBR and miR-214-3p mimic reduced the cell viability, repressed migration and invasion capacities, increased rates of total apoptotic cells and ratio of Bax/Bcl-2, and increased the percentage of G2/M cells of MCF-7 and MDA-MB-231 cells by colony formation and CKK8 assay, scratch wound healing and gelatin-based 3D conformation assay, transwell invasion assay, and cell cycle analysis, respectively. However, miR-214-3p inhibitor counteracted all these effects of BBR. Based on the bioinformatics analysis and dual-luciferase reporter test, we identified binding sites between SCT and miR-214-3p. We further confirmed that BBR massively and dose-dependently reduced the mRNA expression and protein levels of SCT in both MCF-7 and MDA-231 cells. We testified that both miR-214-3p mimic and BBR could decrease the mRNA expression and protein levels of SCT, while miR-214-3p inhibitor weakened these reductions. In conclusion, BBR suppressed MCF-7 and MDA-MB-231 breast cancer cells by upregulating miR-214-3p and increasing its inhibition to SCT.

17.
Front Genet ; 11: 818, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849814

RESUMO

Nano silicon dioxide (Nano-SiO2) has been widely used in industries such as the field of biomedical engineering. Despite the existing evidence that Nano-SiO2 exposure could induce oxidative stress and inflammatory responses in multiple organ systems, the carcinogenicity of Nano-SiO2 exposure has rarely been investigated. Thus in this study, two types of human bronchial epithelial cell lines (16HBE and BEAS-2B) were selected as in vitro models to investigate the carcinogenicity of Nano-SiO2. Our results revealed that Nano-SiO2 induces a malignant cellular transformation in human bronchial epithelial cells according to the soft agar colony formation assay. The carcinogenesis induced by Nano-SiO2 was also confirmed in nude mice. By using immunofluorescence assay and high-performance capillary electrophoresis (HPCE), we observed a genome-wide DNA hypomethylation induced by Nano-SiO2. Besides the reduced enzyme activity of total DNMTs upon Nano-SiO2 treatment, altered expression of DNMTs and methyl-CpG binding proteins were observed. Besides, we found that the expression of NRF2 was activated by demethylation of CpG islands within the NRF2 promoter region and the overexpression of NRF2 could alleviate the carcinogenesis induced by Nano-SiO2. Taken together, our results suggested that Nano-SiO2 induces malignant cellular transformation with a global DNA hypomethylation, and the demethylation of NRF2 promoter activates the expression of NRF2, which plays an important role in protecting against the carcinogenesis induced by Nano-SiO2.

18.
World J Surg Oncol ; 18(1): 52, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32156290

RESUMO

BACKGROUND: The aim of this study was to identify the key differentially expressed genes (DEGs) and high-risk gene mutations in breast ductal carcinoma in situ (DCIS). METHODS: Raw data (GSE36863) were downloaded from the database of Gene Expression Omnibus (GEO), including three DCIS samples (DCIS cell lines MCF10.DCIS, Sum102, and Sum225) and one normal control sample (normal mammary epithelial cell line MCF10A). The DEGs were analyzed using NOIseq and annotated via DAVID. Motif scanning in the promoter region of DEGs was performed via SeqPos. Additionally, single nucleotide variations (SNVs) were identified via GenomeAnalysisTK and SNV risk was assessed via VarioWatch. Mutant genes with a high frequency and risk were validated by RT-PCR analyses. RESULTS: Finally, 5391, 7073, and 7944 DEGs were identified in DCIS, Sum102, and Sum22 cell lines, respectively, when compared with MCF10A. VENN analysis of the three cell lines revealed 603 upregulated and 1043 downregulated DEGs, including 16 upregulated and 36 downregulated transcription factor (TF) genes. In addition, six TFs each (e.g., E2F1 and CREB1) were found to regulate the core up- and downregulated DEGs, respectively. Furthermore, SNV detection results revealed 1104 (MCF10.DCIS), 2833 (Sum102), and 1132 (Sum22) mutation sites. Four mutant genes (RWDD4, SDHC, SEPT7, and SFN) with high frequency and risk were identified. The results of RT-PCR analysis as well as bioinformatics analysis consistently demonstrated that the expression of RWDD4, SDHC, SEPT7, and SFN was downregulated in the tumor tissues as compared with that in adjacent non-tumor tissues. CONCLUSIONS: The differentially expressed TFs, TFs regulating DEGs (e.g., E2F1 and CREB1), and high-frequency mutant genes (RWDD4, SDHC, SEPT7, and SFN) might play key roles in the pathogenesis of DCIS.


Assuntos
Neoplasias da Mama/genética , Carcinoma Intraductal não Infiltrante/genética , Mutação , Neoplasias da Mama/etiologia , Carcinoma Intraductal não Infiltrante/etiologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Polimorfismo de Nucleotídeo Único , Análise de Sequência de RNA , Fatores de Transcrição/genética
19.
J Environ Sci (China) ; 83: 144-151, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31221377

RESUMO

Coupling coagulation and applied electric field is an efficient method to regulate cake layer porosity and hydrophilicity for alleviating ultrafiltration membrane (UF) fouling. However, the Al/Fe flocs aggregation behavior are induced from electric field and determine the cake layer structure, which has not been studied comparatively yet. Herein, the anti-fouling performance in an efficient electro-coagulation membrane reactor (ECMR, in which UF membrane modules are placed between electrodes) was investigated with Al/Fe anode and various electrochemical parameters from the viewpoint of regulating flocs aggregation. Both the cake layers formed from Al and Fe flocs under an electric field were more porous and hydrophilic in comparison with that formed without electric fields, resulting in an enhanced water flux under higher electric field strength. Comparing with Fe flocs, Al flocs had a faster growth rate and larger size, facilitating membrane pore block resistant, which was more pronounced in a higher current density. Furthermore, the cake layer formed from Al flocs was more porous than that formed from Fe flocs. Therefore, the anti-fouling performance of ECMR with Al anode was superior to that of ECMR with Fe anode. When the electric field strength increased from 0 to 10 V/cm, the normalized specific flux was improved from 71.2% to 89.4% for ECMR (Al) and from 48.1% to 70.1% for ECMR (Fe) at 30 min.


Assuntos
Reatores Biológicos , Membranas Artificiais , Eliminação de Resíduos Líquidos/métodos , Incrustação Biológica , Floculação , Ultrafiltração
20.
Chemosphere ; 222: 156-164, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30703655

RESUMO

The interlayer spacing and ion-nanochannel interactions of graphene oxide membranes (GOMs) were simultaneously modulated by thermal reduction and mixing with MoS2 flakes for realizing selective ion separation, which was evaluated by the ratio of ion trans-membrane penetration rates (IPR). The results showed that the ratio of IPRCu2+ to IPRNa+ increased to 1.90 in GOM after thermal reduction for 5 h, which was ∼9.56 times higher than that without thermal reduction, indicating the increase of selectivity of Cu2+ over Na+. This was because the reduction of oxygen-containing groups narrowed the interlayer spacing and moderated the coordination between Cu2+ and sp3 clusters in GO, leading to an enhancement of the size-sieving effect but a decrease in the Cu (II)-nanochannel interaction. Meanwhile, the value of IPRCu2+/IPR Na+ was 0.374 after intercalating MoS2 into GO laminates (GO-MoS2 membrane, GMM), which was ∼1.87 times higher in comparison with that in GOM. This might be because the intercalation of MoS2 narrowed the interlayer spacing, enhanced the size-sieving effect, and strengthened the Na+ ion-nanochannel interactions (cation-π and ion-MoS2 chemical interactions) according to density functional theory calculations. Furthermore, IPRCu2+/IPR Na+ was ∼5.09 in GMM under thermal reduction for 5 h, which was ∼25.5 times higher in comparison with that in GOM without thermal reduction, exhibiting a great enhancement in selectivity for Cu2+. This indicated that thermal reduction and MoS2 intercalation could work in concert to control the size-sieving effect and ion-nanochannel interactions to achieve fine separation of heavy metal ions from main group metal ions.


Assuntos
Membranas Artificiais , Metais Pesados/isolamento & purificação , Cátions/isolamento & purificação , Cobre/isolamento & purificação , Teoria da Densidade Funcional , Dissulfetos/química , Grafite , Temperatura Alta , Molibdênio/química , Óxidos , Sódio/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...