Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(12): e22623, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38213589

RESUMO

Small berry pomaces (SBPs) are poorly utilized as an inexpensive source of bioactive compounds. This study investigated the impact of compounding treatment on nutritional and antioxidant characteristics of combined SBPs, in comparison with single SBP. The results showed that the amounts of protein, minerals, dietary fiber (DF) and anthocyanidins were significantly (p < 0.05) higher in combined SBPs than in combined fruits. Moreover, the combined SBPs were characterized by an elevated abundance of minerals and anthocyanidins (6 kinds, and 5 kinds, respectively), substantiating the effectiveness of compounding treatment on SBP nutrition. A total of 776 secondary phytochemicals were detected in combined SBPs by a widely targeted metabolomics approach. Each SBP contained approximately 100 kinds of unique natural antioxidants. Furthermore, the combined SBPs group had the highest antioxidant activity compared with single SBP. Meanwhile, the antioxidant activities determined in combined SBPs were higher than arithmetic mean value of single SBP. The synergism and interaction of active components in different sources of SBPs play vital role in the high antioxidant capacity of combined SBPs. All the results provide reference for the comprehensive development and utilization of fruit residues. The SBPs should be highly prized for their substantial amount of nutritional and bioactive constituents, including protein, DF, essential minerals and secondary metabolites. These secondary metabolites are positively associated with antioxidant benefits. The present study summarizes the knowledge about bioactive compounds and antioxidant activities of combined SBPs group and discusses the relevant mechanisms. A conclusion can be educed that combined process is an effective way to improve properties of the pomaces.

2.
Environ Monit Assess ; 193(7): 436, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34155596

RESUMO

Long-term continuous cropping is a common practice in facility vegetable production, which has an adverse effect on cucumber yield and quality. Soil fungi are of great significance for creating a normal soil ecological environment. However, the impact of continuous cropping on cucumber quality and soil fungal community has yet to be understood. In this study, we evaluated the effects of continuous cropping on cucumber using high-throughput sequencing technology. The results showed that the extension of continuous cropping would increase nitrate and total acidity of cucumber, while the contents of vitamin C (VC), soluble sugar, and protein were decreased. The increase of continuous cropping duration also reduced the fungal diversity of the cucumber soil. For example, the activity of three dominant fungal phylums, Ascomycota, Aphelidiomycota, and Basidiomycota, decreased with the extension of planting years. The relative abundance of the two fungi species (Remersonia_thermophila, Mortierella_oligospora) was negatively correlated with the contents of available phosphorus and available potassium (P < 0.05). Redundancy analysis (RDA) found that soil electrical conductivity (EC), available phosphorus (AP), and pH accounted for the top three major factors of fungal community structure changes. The soil fungal community was changed during the continuous cucumber cultivation, which might be the result of the combined cultivation period of cucumber and excessive application of chemical fertilizers (nitrogen fertilizer, phosphate fertilizer, etc.). Our study provides a theoretical basis for the understanding of the impact of continuous cropping in cucumber facilities.


Assuntos
Cucumis sativus , Micobioma , Monitoramento Ambiental , Solo , Microbiologia do Solo
3.
Ying Yong Sheng Tai Xue Bao ; 32(5): 1777-1782, 2021 May.
Artigo em Chinês | MEDLINE | ID: mdl-34042373

RESUMO

Reasonable application of microbial agents can significantly improve soil environment and increase the yield and quality of vegetables. In this study, we examined the effects of different forms of microbial agents on the growth and quality of Brassica rapa L. ssp. chinensis Makino (non-heading Chinese cabbage) under the conditions of no microbial agent application, liquid and solid microbe agents application. The results showed that compared with no microbial agent, application of liquid and solid microbial agent significantly improved soil urease activity, plant nitrogen content, leaf area, SPAD value, and net photosynthetic rate, and increased vegetable production by 26.9% and 34.4% respectively. Meanwhile, the total phenol content and ascorbic acid content of non-heading Chinese cabbage were increased and nitrate content was significantly decreased by applying microbial agents. Thus, rational application of microbial agents promoted the yield and quality of non-heading Chinese cabbage. From the perspective of vegetable growth, liquid microbial agents work fast, solid microbial agents had good long-term efficacy. The cooperating application with organic and inorganic fertilizers would facilitate the excellent quality and high yield of vegetables.


Assuntos
Brassica rapa , Brassica , Ácido Ascórbico , China , Folhas de Planta
4.
Front Plant Sci ; 12: 786043, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003171

RESUMO

Melatonin is an important and widespread plant hormone. However, the underlying physiological and molecular mechanisms of melatonin as a secondary messenger in improving cold tolerance by selenium are limited. This study investigated the effects of selenite on the cold stress of cucumber seedlings. The results showed that exogenous application of selenite improved the cold tolerance of cucumber seedlings, which was dependent on the concentration effect. In the present experiment, 1 µM of selenite showed the best effect on alleviating cold stress. Interestingly, we found that in the process of alleviating cold stress, selenite increased the content of endogenous melatonin by regulating the expression of melatonin biosynthesis genes (TDC, T5H, SNAT, and COMT). To determine the interrelation between selenite and melatonin in alleviating cold stress, melatonin synthesis inhibitor p-chlorophenylalanine and melatonin were used for in-depth study. This study provides a theoretical basis for cucumber cultivation and breeding.

5.
Environ Monit Assess ; 192(10): 651, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32964290

RESUMO

Cadmium (Cd) pollution in plastic shed soils has become increasingly severe, posing a great threat to human health and social stability. Phytoremediation of cadmium pollution is an environmentally friendly and inexpensive remediation method. In this study, maize (Zea mays L.) was selected as the phytoremediation crop by a potted method, and the bioavailability of cadmium was investigated by adding exogenous elemental sulfur. The relationships among the sulfur content, maize growth, cadmium accumulation, and soil parameters were systematically studied. The results showed that, with the supplement of sulfur, the soil pH and activities of soil enzymes (urease, catalase, and sucrase) decreased gradually, and the available heavy metals (Cd, Cr, Zn, and Cu) in soil showed an upward trend. The optimal cadmium enrichment was achieved under T2 by increasing both the biomass of the maize plant and the cadmium concentration in roots and stems. However, T3 and T4 significantly inhibited the growth of maize roots and shoots, leading to a much lower plant biomass compared with that of CK (sulfur-free treatment) and T2. In addition, the cumulative cadmium was not increased because of the low accumulation of cadmium in some parts of the plant. Correlation analyses showed that the sulfur content was negatively correlated with soil pH and maize biomass (P < 0.01), and the cadmium content of whole maize was positively correlated with the dry weight of maize (P < 0.05) and the cadmium content in roots and stems (P < 0.01). In summary, to optimize cadmium phytoremediation of the plastic shed soil, an appropriate concentration of sulfur should be selected in practical applications to ensure that the biomass of the maize is maximized, and the cadmium concentration in different parts of the maize is increased or stabilized.


Assuntos
Cádmio/análise , Poluentes do Solo/análise , Biodegradação Ambiental , Biomassa , Monitoramento Ambiental , Humanos , Raízes de Plantas/química , Plásticos , Solo , Enxofre , Zea mays
6.
Environ Monit Assess ; 191(4): 240, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30911845

RESUMO

Shandong is one of the main areas for protected vegetable cultivation in China. A total of 88.5% of the facility soil samples had a pH between 7.0 and 8.4, indicating the majority of the soils were alkaline. Key properties, including total nitrogen (TN), organic matter (OM), electrical conductivity (EC), available phosphorus (AP), and available potassium (AK), showed an increasing trend with the number of years. The geoaccumulation index (Igeo) indicated that the Cd and Hg contents ranged from uncontaminated to moderate contaminated, while the risk of Hg and Cd reached the class of considerable risk as indicated by the potential ecological risk factor ([Formula: see text]). The mean of Hakanson potential ecological risk index (RI) was 234.00, with the highest contribution from Hg (55.26%), followed by Cd (38.81%). It indicated that the survey area was at the moderate-risk level and Hg had the highest potential ecological risk factor, followed by Cd.


Assuntos
Monitoramento Ambiental/métodos , Metais Pesados/química , Nutrientes/química , Solo/química , China , Ecologia , Mercúrio/análise , Medição de Risco , Poluentes do Solo/química , Verduras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...