Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Parasitol ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936501

RESUMO

Establishing an intact intracellular parasitophorous vacuole (PV) that enables efficient nutrient uptake and protein trafficking is essential for the survival and proliferation of Toxoplasma gondii. Although the PV membrane (PVM)-localized dense granule protein 17 (GRA17) and GRA23 mediate the permeability of the PVM to small molecules, including nutrient uptake and excretion of metabolic by-products, the molecular mechanism by which T. gondii acquires nutrients remains unclear. In this study, we showed that the secreted protein GRA47 contributed to normal PV morphology, PVM permeability to small molecules, growth, and virulence in T. gondii. Co-immunoprecipitation analysis demonstrated potential interaction of GRA47 with GRA72, and the loss of GRA72 affected PV morphology, parasite growth and infectivity. To investigate the biological relationship among GRA47, GRA72, GRA17 and GRA23, attempts were made to construct strains with double gene deletion and overexpressing strains. Only Δgra23Δgra72 was successfully constructed. This strain exhibited a significant increase in the proportion of aberrant PVs compared with the Δgra23 strain. Overexpressing one of the three related GRAs partially rescued PVs with aberrant morphology in Δgra47, Δgra72 and Δgra17, while the expression of the Plasmodium falciparum PVM protein PfExp2, an ortholog of GRA17 and GRA23, fully rescued the PV morphological defect in all three Δgra strains. These results suggest that these three GRA proteins may not be functionally redundant but rather work in different ways to regulate nutrient acquisition. These findings highlight the versatility of the nutrient uptake mechanisms in T. gondii, which may contribute to the parasite's remarkable ability to grow in different cellular niches in a very broad range of hosts.

2.
Parasit Vectors ; 17(1): 178, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576040

RESUMO

BACKGROUND: To successfully replicate within the host cell, Toxoplasma gondii employs several mechanisms to overcome the host cell defenses and mitigate the harmful effects of the free radicals resulting from its own metabolic processes using effectors such as thioredoxin proteins. In this study, we characterize the location and functions of a newly identified thioredoxin in T. gondii, which was named Trx4. METHODS: We characterized the functional role of Trx4 in T. gondii Type I RH and Type II Pru strains by gene knockout and studied its subcellular localization by endogenous protein HA tagging using CRISPR-Cas9 gene editing. The enzyme-catalyzed proximity labeling technique, the TurboID system, was employed to identify the proteins in proximity to Trx4. RESULTS: Trx4 was identified as a dense granule protein of T. gondii predominantly expressed in the parasitophorous vacuole (PV) and was partially co-localized with GRA1 and GRA5. Functional analysis showed that deletion of trx4 markedly influenced the parasite lytic cycle, resulting in impaired host cell invasion capacity in both RH and Pru strains. Mutation of Trx domains in Trx4 in RH strain revealed that two Trx domains were important for the parasite invasion. By utilizing the TurboID system to biotinylate proteins in proximity to Trx4, we identified a substantial number of proteins, some of which are novel, and others are previously characterized, predominantly distributed in the dense granules. In addition, we uncovered three novel proteins co-localized with Trx4. Intriguingly, deletion of trx4 did not affect the localization of these three proteins. Finally, a virulence assay demonstrated that knockout of trx4 resulted in a significant attenuation of virulence and a significant reduction in brain cyst loads in mice. CONCLUSIONS: Trx4 plays an important role in T. gondii invasion and virulence in Type I RH strain and Type II Pru strain. Combining the TurboID system with CRISPR-Cas9 technique revealed many PV-localized proximity proteins associated with Trx4. These findings suggest a versatile role of Trx4 in mediating the processes that occur in this distinctive intracellular membrane-bound vacuolar compartment.


Assuntos
Toxoplasma , Animais , Camundongos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Antígenos de Protozoários/genética , Virulência/genética , Fatores Imunológicos/metabolismo , Tiorredoxinas/genética
3.
Nat Commun ; 15(1): 793, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38278808

RESUMO

Sexual development in Toxoplasma gondii is a multistep process that culminates in the production of oocysts, constituting approximately 50% of human infections. However, the molecular mechanisms governing sexual commitment in this parasite remain poorly understood. Here, we demonstrate that the transcription factors AP2XI-2 and AP2XII-1 act as negative regulators, suppressing merozoite-primed pre-sexual commitment during asexual development. Depletion of AP2XI-2 in type II Pru strain induces merogony and production of mature merozoites in an alkaline medium but not in a neutral medium. In contrast, AP2XII-1-depleted Pru strain undergoes several rounds of merogony and produces merozoites in a neutral medium, with more pronounced effects observed under alkaline conditions. Additionally, we identified two additional AP2XI-2-interacting proteins involved in repressing merozoite programming. These findings underscore the intricate regulation of pre-sexual commitment by a network of factors and suggest that AP2XI-2 or AP2XII-1-depleted Pru parasites can serve as a model for studying merogony in vitro.


Assuntos
Toxoplasma , Animais , Humanos , Toxoplasma/metabolismo , Merozoítos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
4.
Int J Parasitol ; 54(2): 109-121, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37832712

RESUMO

Pathogenicity of the zoonotic pathogen Toxoplasma gondii largely depends on the secretion of effector proteins into the extracellular milieu and host cell cytosol, including the dense granule proteins (GRAs). The protein-encoding gene TGME49_299780 was previously identified as a contributor to parasite fitness. However, its involvement in parasite growth, virulence and infectivity in vitro and in vivo remains unknown. Here, we comprehensively examined the role of this new protein, termed GRA76, in parasite pathogenicity. Subcellular localization revealed high expression of GRA76 in tachyzoites inside the parasitophorous vacuole (PV). However, its expression was significantly decreased in bradyzoites. A CRISPR-Cas9 approach was used to knock out the gra76 gene in the T. gondii type I RH strain and type II Pru strain. The in vitro plaque assays and intracellular replication showed the involvement of GRA76 in replication of RH and Pru strains. Deletion of the gra76 gene significantly decreased parasite virulence, and reduced the brain cyst burden in mice. Using RNA sequencing, we detected a significant increase in the expression of bradyzoite-associated genes such as BAG1 and LDH2 in the PruΔgra76 strain compared with the wild-type Pru strain. Using an in vitro bradyzoite differentiation assay, we showed that loss of GRA76 significantly increased the propensity for parasites to form bradyzoites. Immunization with PruΔgra76 conferred partial protection against acute and chronic infection in mice. These findings show the important role of GRA76 in the pathogenesis of T. gondii and highlight the potential of PruΔgra76 as a candidate for a live-attenuated vaccine.


Assuntos
Toxoplasma , Animais , Camundongos , Toxoplasma/genética , Virulência/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
5.
PLoS Pathog ; 19(12): e1011831, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38091362

RESUMO

Protein phosphatases are post-translational regulators of Toxoplasma gondii proliferation, tachyzoite-bradyzoite differentiation and pathogenesis. Here, we identify the putative protein phosphatase 6 (TgPP6) subunits of T. gondii and elucidate their role in the parasite lytic cycle. The putative catalytic subunit TgPP6C and regulatory subunit TgPP6R likely form a complex whereas the predicted structural subunit TgPP6S, with low homology to the human PP6 structural subunit, does not coassemble with TgPP6C and TgPP6R. Functional studies showed that TgPP6C and TgPP6R are essential for parasite growth and replication. The ablation of TgPP6C significantly reduced the synchronous division of the parasite's daughter cells during endodyogeny, resulting in disordered rosettes. Moreover, the six conserved motifs of TgPP6C were required for efficient endodyogeny. Phosphoproteomic analysis revealed that ablation of TgPP6C predominately altered the phosphorylation status of proteins involved in the regulation of the parasite cell cycle. Deletion of TgPP6C significantly attenuated the parasite virulence in mice. Immunization of mice with TgPP6C-deficient type I RH strain induced protective immunity against challenge with a lethal dose of RH or PYS tachyzoites and Pru cysts. Taken together, the results show that TgPP6C contributes to the cell division, replication and pathogenicity in T. gondii.


Assuntos
Parasitos , Fosfoproteínas Fosfatases , Toxoplasma , Animais , Humanos , Camundongos , Domínio Catalítico , Ciclo Celular/genética , Divisão Celular , Parasitos/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Virulência/genética , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo
6.
FASEB J ; 37(6): e22932, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37115746

RESUMO

Glutaredoxins (Grxs) are ubiquitous antioxidant proteins involved in many molecular processes to protect cells against oxidative damage. Here, we study the roles of Grxs in the pathogenicity of Toxoplasma gondii. We show that Grxs are localized in the mitochondria (Grx1), cytoplasm (Grx2), and apicoplast (Grx3, Grx4), while Grx5 had an undetectable level of expression. We generated Δgrx1-5 mutants of T. gondii type I RH and type II Pru strains using CRISPR-Cas9 system. No significant differences in the infectivity were detected between four Δgrx (grx2-grx5) strains and their respective wild-type (WT) strains in vitro or in vivo. Additionally, no differences were detected in the production of reactive oxygen species, total antioxidant capacity, superoxide dismutase activity, and sensitivity to external oxidative stimuli. Interestingly, RHΔgrx1 or PruΔgrx1 exhibited significant differences in all the investigated aspects compared to the other grx2-grx5 mutant and WT strains. Transcriptome analysis suggests that deletion of grx1 altered the expression of genes involved in transport and metabolic pathways, signal transduction, translation, and obsolete oxidation-reduction process. The data support the conclusion that grx1 supports T. gondii resistance to oxidative killing and is essential for the parasite growth in cultured cells and pathogenicity in mice and that the active site CGFS motif was necessary for Grx1 activity.


Assuntos
Antioxidantes , Toxoplasma , Animais , Camundongos , Glutarredoxinas/genética , Toxoplasma/genética , Sequência de Aminoácidos , Virulência , Oxirredução , Estresse Oxidativo
7.
Microbiol Spectr ; 11(1): e0307822, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36515555

RESUMO

The analysis of the subcellular localization and function of dense granule proteins (GRAs) is of central importance for the understanding of host-parasite interaction and pathogenesis of Toxoplasma gondii infection. Here, we identified 15 novel GRAs and used C-terminal endogenous gene tagging to determine their localization at the intravacuolar network (IVN), parasitophorous vacuole (PV), or PV membrane (PVM) in the tachyzoites and at the periphery of the bradyzoites-containing cysts. The functions of the 15 gra genes were examined in type I RH strain and 5 of these gra genes were also evaluated in the cyst-forming type II Pru strain. The 15 novel gra genes were successfully disrupted by using CRISPR-Cas9 mediated homologous recombination and the results showed that 13 gra genes were not individually essential for T. gondii replication in vitro or virulence in mice during acute and chronic infection. Intriguingly, deletion of TGME49_266410 and TGME49_315910 in both RH and Pru strains decreased the parasite replication in vitro and attenuated its virulence, and also reduced the cyst-forming ability of the Pru strain in mice during chronic infection. Comparison of the transcriptomic profiles of the 15 gra genes suggests that they may play roles in other life cycle stages and genotypes of T. gondii. Taken together, our findings improve the understanding of T. gondii pathogenesis and demonstrate the involvement of two novel GRAs, TGME49_266410 and TGME49_315910, in the parasite replication and virulence. IMPORTANCE Dense granule proteins (GRAs) play important roles in Toxoplasma gondii pathogenicity. However, the functions of many putative GRAs have not been elucidated. Here, we found that 15 novel GRAs are secreted into intravacuolar network (IVN), parasitophorous vacuole (PV), or PV membrane (PVM) in tachyzoites and are located at the periphery of the bradyzoite-containing cysts. TGME49_266410 and TGME49_315910 were crucial to the growth of RH and Pru strains in vitro. Deletion of TGME49_266410 and TGME49_315910 attenuated the parasite virulence in mice. However, disruption of other 13 gra genes did not have a significant impact on the proliferation and pathogenicity of T. gondii in vitro or in vivo. The marked effects of the two novel GRAs (TGME49_266410 and TGME49_315910) on the in vitro growth and virulence of T. gondii are notable and warrant further elucidation of the temporal and spatial dynamics of translocation of these two novel GRAs and how do they interfere with host cell functions.


Assuntos
Toxoplasma , Toxoplasmose , Animais , Camundongos , Toxoplasma/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Sistemas CRISPR-Cas , Infecção Persistente
8.
Front Vet Sci ; 9: 975238, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304411

RESUMO

Toxoplasma gondii and Neospora caninum are two obligate intracellular protozoan parasites that can cause reproductive failure and production losses. To date, there is no data of T. gondii and N. caninum seroprevalence in black goats in Yunnan Province, southwestern China. In the present study, a total of 734 serum samples were collected from black goats in four different counties of Yunnan Province. 734 and 590 serum samples were examined for antibodies against T. gondii and N. caninum by using MAT and indirect ELISA, respectively. A total of 123 and 76 samples were T. gondii-positive and N. caninum-positive, respectively. The overall seroprevalence of T. gondii in black goats was 16.76% (123/734, 95% CI: 14.06-19.46) with the titer ranged from 1:25 to 1:3200. The seroprevalence of N. caninum was 12.88% (76/590, 95% CI: 10.18-15.58). There was significant difference in seroprevalence of N. caninum in different regions (P < 0.01, χ2 = 30.63) and age groups (P < 0.05, χ2 = 11.85). Significant differences in seroprevalence of T. gondii were observed in different regions (P < 0.05, χ2 = 9.21) and different gender groups (P < 0.01, χ2 = 12.29). Results of seroprevalence of T. gondii and N. caninum indicated that T. gondii and N. caninum were prevalent parasites in black goats in Yunnan Province. This is the first report of seroprevalence of T. gondii and N. caninum in black goats in Yunnan Province. The results of this study indicated that some measures should be taken to control these two parasites and to reduce economic losses to the livestock industry in Yunnan Province.

9.
Front Microbiol ; 12: 703059, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34531837

RESUMO

Toxoplasma gondii is an obligate intracellular protozoan parasite, which has a worldwide distribution and can infect a large number of warm-blooded animals and humans. T. gondii must colonize and proliferate inside the host cells in order to maintain its own survival by securing essential nutrients for the development of the newly generated tachyzoites. The type II fatty acid biosynthesis pathway (FASII) in the apicoplast is essential for the growth and survival of T. gondii. We investigated whether deletion of genes in the FASII pathway influences the in vitro growth and in vivo virulence of T. gondii. We focused on beta-hydroxyacyl-acyl carrier protein dehydratase (FabZ) and oxidoreductase, short chain dehydrogenase/reductase family proteins ODSCI and ODSCII. We constructed T. gondii strains deficient in FabZ, ODSCI, and ODSCII using CRISPR-Cas9 gene editing technology. The results of immunofluorescence assay, plaque assay, proliferation assay and egress assay showed that in RHΔFabZ strain the apicoplast was partly lost and the growth ability of the parasite in vitro was significantly inhibited, while for RHΔODSCI and RHΔODSCII mutant strains no similar changes were detected. RHΔFabZ exhibited reduced virulence for mice compared with RHΔODSCI and RHΔODSCII, as shown by the improved survival rate. Deletion of FabZ in the PRU strain significantly decreased the brain cyst burden in mice compared with PRUΔODSCI and PRUΔODSCII. Collectively, these findings suggest that FabZ contributes to the growth and virulence of T. gondii, while ODSCI and ODSCII do not contribute to these traits.

10.
Front Cell Dev Biol ; 9: 738794, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35083211

RESUMO

Protein serine/threonine phosphatases (PSPs), found in various plants and protozoa, are involved in the regulation of various biological processes. However, very little is known about the role of PSPs in the pathogenicity of the apicomplexan protozoan Toxoplasma gondii. Herein, the subcellular localization of 17 PSPs (PP5, PP7, EFPP, SLP, PPM3F, PPM4, PPM5A, PPM5B, PPM6, PPM8, PPM9, PPM12, PPM14, PPM18, CTD1, CTD2, and CTD3) was examined by 6× HA tagging of endogenous genes in C-terminal. The PSPs were detected in the cytoplasm (PP5, EFPP, PPM8, and CTD2), dense granules (SLP), nucleus (PPM4 and PPM9), inner membrane complex (PPM12), basal complex (CTD3), and apical pole (PP7). The remaining PSPs exhibited low or undetectable level of expression. To characterize the contribution of these genes to the infectivity of T. gondii, knock-out (KO) strains of type I RH strain deficient in the 17 psp genes and KO type II Pru strain deficient in pp7 and slp genes were constructed. The pathogenicity of individual RHΔpsp mutants was characterized in vitro using plaque, egress, and intracellular replication assays, and mouse infection, while pathogenicity of PruΔpp7 and PruΔslp mutant strains was evaluated by examining the parasite lytic cycle in vitro and assessment of brain cyst burden in mice. No significant differences were observed between 16 RHΔpsp strains and wild-type (WT) RH strain. However, RHΔpp7 exhibited significantly lower invasion efficiency and parasitophorous vacuole formation in vitro, and less virulence in mice compared with other RHΔpsp and WT strains. In addition, PruΔpp7 exhibited marked attenuation of virulence and significant reduction in the brain cyst burden in mice compared with PruΔslp and WT strains, suggesting the key role of PP7 in the virulence of T. gondii. Comparative transcriptomic profiling of the 17 psp genes showed that they may play different roles in the pathogenesis of different genotypes or life cycle stages of T. gondii. These findings provide new insight into the role of PSPs in the pathogenesis of T. gondii.

11.
Front Vet Sci ; 7: 363, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32766288

RESUMO

The Gram-negative bacteria of the genus Chlamydia cause a wide range of diseases in humans and animals. The seroprevalence of Chlamydia in domestic black-boned sheep and goats in China is unknown. In this survey, a total of 481 serum samples were collected randomly from domestic black-boned sheep and goats from three counties in Yunnan province, southwest China, from July to August 2017. The sera were examined by an indirect hemagglutination assay (IHA). Antibodies to Chlamydia were detected in 100/481 [20.79%, 95% confidence interval (CI), 17.16-24.42] serum samples (IHA titer ≥1:64). The Chlamydia seroprevalence ranged from 12.21% (95% CI, 7.81-16.61) to 30.89% (95% CI, 22.72-39.06) across different regions in Yunnan province, and the differences were statistically significant (P < 0.01). The seroprevalence in male domestic black-boned sheep and goats (28.64%; 95% CI, 22.36-34.92) was significantly higher than that in the females (15.25%; 95% CI, 11.05-19.45) (P < 0.01). However, there was no statistically significant difference in Chlamydia seroprevalence in domestic black-boned sheep and goats between ages and species (P > 0.05). To our knowledge, this is the first report of Chlamydia seroprevalence in domestic black-boned sheep and goats in Yunnan Province, southwest China. These data provide baseline information for future implementation of measures to control Chlamydia infection in these animals.

12.
Parasitol Res ; 119(9): 2907-2916, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32686022

RESUMO

The protozoan parasite Toxoplasma gondii secretes a number of dense granule proteins (GRAs) from the dense granule organelle to manipulate the host cell. Two of these effector proteins (GRA17 and GRA23) are involved in the trafficking of molecules between the parasitophorous vacuole (PV) and the host cell cytoplasm. However, their roles in establishing chronic infection remain obscured. In this study, CRISPR-Cas9 was used to delete gra17 or gra23 gene in T. gondii Pru strain (type II). The growth, the virulence, the ability to establish chronic infection, and the immunogenicity of the constructed mutant strains were investigated in Kunming mice. Pru:Δgra17 and Pru:Δgra23 mutants developed PVs with abnormal morphology and exhibited reduced growth rate, compared with the wild-type Pru strain. Deletion of gra17 abrogated acute infection and blocked cyst formation. Although the deletion of gra23 caused slight attenuation of the parasite virulence in mice, it caused a significant reduction in cyst formation. Immunization with Pru:Δgra17 induced high levels of IgG (IgG1 and IgG2a) antibodies and cytokines (interleukin-2 [IL-2], IL-10, IL-12, and interferon gamma [IFN-γ]), which conferred significant protection in mice challenged with virulent type I (RH), ToxoDB#9 (PYS) strains, or less virulent type II (Pru) strain of T. gondii. These findings show that GRA17 and GRA23 play important roles in T. gondii chronic infection and that irreversible deletion of gra17 in T. gondii type II Pru strain can be a viable option for stimulating protective immunity to T. gondii infection.


Assuntos
Antígenos de Protozoários/imunologia , Citocinas/metabolismo , Proteínas de Protozoários/genética , Toxoplasma , Fatores de Virulência/genética , Animais , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Feminino , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Camundongos , Toxoplasma/genética , Toxoplasma/crescimento & desenvolvimento , Toxoplasma/imunologia , Toxoplasma/patogenicidade , Toxoplasmose Animal/parasitologia , Virulência/genética
13.
Parasitol Res ; 119(9): 2813-2819, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32583163

RESUMO

Cryptosporidium is an opportunistic protozoan parasite that can inhabit in the gastrointestinal tract of various hosts. Cryptosporidium infection in black-boned goats and black-boned sheep may pose a threat to the survival and productivity, causing considerable economic losses to the livestock industry. However, it is yet to know whether black-boned goats and black-boned sheep in China are infected with Cryptosporidium. Thus, the objective of the present study was to investigate the prevalence and associated risk factors of Cryptosporidium infection in black-boned goats and black-boned sheep in Yunnan province, China. A total of 590 fecal samples were obtained from black-boned goats and black-boned sheep from five counties in Yunnan province, and the prevalence and species distribution of Cryptosporidium were determined by amplification of the 18S rDNA fragment using the nested PCR. The overall Cryptosporidium prevalence was 13.2% (78/590), with 18.0% (55/305) in black-boned goats and 8.1% (23/285) in black-boned sheep. The age and sampling site were identified as main factors that result in significant differences in Cryptosporidium prevalence. Three species, namely C. muris, C. xiaoi, and C. ubiquitum, were identified in black-boned goats and black-boned sheep in the present study, with C. muris (46/78) as the predominant species. This is the first report of Cryptosporidium infection in black-boned goats and black-boned sheep in China, and the findings will facilitate better understanding, prevention, and control of Cryptosporidium infection in black-boned goats and black-boned sheep in China.


Assuntos
Criptosporidiose/epidemiologia , Cryptosporidium/isolamento & purificação , Doenças das Cabras/parasitologia , Reação em Cadeia da Polimerase/veterinária , Doenças dos Ovinos/parasitologia , Animais , China/epidemiologia , Cryptosporidium/classificação , Cryptosporidium/genética , Fezes/parasitologia , Trato Gastrointestinal/parasitologia , Cabras/parasitologia , Prevalência , RNA Ribossômico 18S/genética , Fatores de Risco , Ovinos/parasitologia
14.
Microorganisms ; 8(3)2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32121619

RESUMO

: In the present study, a dense granule protein 17 (gra17) and novel putative transporter (npt1) double deletion mutant of Toxoplasma gondii RH strain was engineered. The protective efficacy of vaccination using RHΔgra17Δnpt1 tachyzoites against acute, chronic, and congenital toxoplasmosis was studied in a mouse model. Immunization using RHΔgra17Δnpt1 induced a strong humoral and cellular response, as indicated by the increased levels of anti-T. gondii specific IgG, interleukin 2 (IL-2), IL-10, IL-12, and interferon-gamma (IFN-γ). Vaccinated mice were protected against a lethal challenge dose (103 tachyzoites) of wild-type homologous (RH) strain and heterologous (PYS and TgC7) strains, as well as against 100 tissue cysts or oocysts of Pru strain. Vaccination also conferred protection against chronic infection with 10 tissue cysts or oocysts of Pru strain, where the numbers of brain cysts in the vaccinated mice were significantly reduced compared to those detected in the control (unvaccinated + infected) mice. In addition, vaccination protected against congenital infection with 10 T. gondii Pru oocysts (administered orally on day 5 of gestation) as shown by the increased litter size, survival rate and the bodyweight of pups born to vaccinated dams compared to those born to unvaccinated + infected dams. The brain cyst burden of vaccinated dams was significantly lower than that of unvaccinated dams infected with oocysts. Our data show that T. gondii RHΔgra17Δnpt1 mutant strain can protect mice against acute, chronic, and congenital toxoplasmosis by balancing inflammatory response with immunogenicity.

15.
Front Vet Sci ; 7: 614759, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33521087

RESUMO

Toxoplasmosis caused by infection with Toxoplasma gondii is an important parasitic zoonosis with a worldwide distribution. In this study, we examined the functions of two thioredoxins (namely CTrp26 and CTrx1) of T. gondii tachyzoites by generation of HA tag strains or gene deficient parasites in Type I RH strain (ToxoDB#10). Immunofluorescence analysis (IFA) was used to investigate the subcellular localization of the thioredoxins (Trxs). Results of IFA showed that both CTrp26 and CTrx1 were located in the cytoplasm of T. gondii. Functional characterizations of CTrp26 and CTrx1-deficient parasites were performed by plaque assay, intracellular replication, egress, H2O2 resistance, detection of reactive oxygen species (ROS) level and total antioxidant capacity (T-AOC) assays in vitro, as well as mouse infection in vivo. Our results showed that deletion of CTrp26 or CTrx1 did not influence the ability of T. gondii RH strain to replicate, egress, form plaque, resist H2O2 exposure, maintain the ROS level, and T-AOC, and also did not serve as virulence factors in Kunming mice. Taken together, these results provide new properties of the two Trxs. Although they are not essential for RH strain, they may have roles in other strains of this parasite due to their different expression patterns, which warrants future research.

16.
Parasitol Int ; 75: 102041, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31846740

RESUMO

Toxoplasma gondii and Neospora caninum are two closely related protozoan parasites which can cause abortion and significant economic losses in sheep and goats. However, it is yet to know whether black-bone sheep and goats are infected with T. gondii and N. caninum in China. In the present investigation, the seroprevalence and risk factors of T. gondii and N. caninum infections in black-boned sheep and goats were investigated in Yunnan Province, subtropical southwest China between July and August of 2017. A total of 481 serum samples were tested for T. gondii antibodies using the Modified Agglutination Test (MAT), and 468 serum samples were examined for N. caninum antibodies by indirect Enzyme-Linked Immunosorbent Assay (iELISA). The overall seroprevalence of T. gondii in black-boned sheep and goats was 36.80% (177/481, 95% CI 32.49-41.11), and 40 out of 468 serum samples were N. caninum-seropositive (8.55%, 95% CI 6.02-11.08). There was significant difference in the seroprevalence of T. gondii infection in different regions (χ2 = 19.869, df = 2, P<0.01). As for the seroprevalence of N. caninum infection, region (χ2 = 8.558, df = 2, P<0.05), age (χ2 = 16.631, df = 3, P < 0.01), gender (χ2 = 11.219, df = 1, P < 0.01) and species (χ2 = 8.673, df = 1, P < 0.01) were the risk factors. In addition, the seroprevalence of coinfection of T. gondii and N. caninum in black-boned sheep and goats was 3.63% (17/468, 95% CI 1.94-5.32). To our knowledge, this is the first report of T. gondii and N. caninum seroprevalence in black-boned sheep and goats in China, which provided base-line data for the execution of control strategies and measures against T. gondii and N. caninum infection in black-boned sheep and goats.


Assuntos
Coccidiose/veterinária , Doenças das Cabras/epidemiologia , Neospora/isolamento & purificação , Doenças dos Ovinos/epidemiologia , Toxoplasma/isolamento & purificação , Toxoplasmose Animal/epidemiologia , Animais , China/epidemiologia , Coccidiose/epidemiologia , Coccidiose/parasitologia , Feminino , Doenças das Cabras/parasitologia , Cabras , Masculino , Prevalência , Fatores de Risco , Estudos Soroepidemiológicos , Ovinos , Doenças dos Ovinos/parasitologia , Toxoplasmose Animal/parasitologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-31867292

RESUMO

In this study, we characterized the role of amylo-alpha-1,6-glucosidase (Aa16GL) in the biology and infectivity of Toxoplasma gondii, using Aa16GL-deficient parasites of type I RH and type II Prugniaud (Pru) strains. The subcellular localization of Aa16GL protein was characterized by tagging a 3 × HA to the 3' end of the Aa16GL gene endogenous locus. Immunostaining of the expressed Aa16GL protein revealed that it is located in several small cytoplasmic puncta. Functional characterization of ΔAa16GL mutants using plaque assay, egress assay and intracellular replication assay showed that parasites lacking Aa16GL exhibit a slight reduction in the growth rate, but remained virulent to mice. Although PruΔAa16GL tachyzoites retained the ability to differentiate into bradyzoites in vitro, they exhibited slight reduction in their ability to form cysts in mice. These findings reveal new properties of Aa16GL and suggest that while it does not have a substantial role in mediating T. gondii infectivity, this protein can influence the formation of parasite cysts in mice.


Assuntos
Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Toxoplasmose/parasitologia , Animais , Sistemas CRISPR-Cas , Feminino , Técnicas de Silenciamento de Genes , Sistema da Enzima Desramificadora do Glicogênio/genética , Camundongos , Mutação , Proteínas de Protozoários/genética , Toxoplasma/genética , Toxoplasma/ultraestrutura , Toxoplasmose/mortalidade , Toxoplasmose/patologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...