Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Syst Evol Microbiol ; 67(6): 1943-1948, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28629491

RESUMO

A Gram-staining-negative, non-motile, non-spore-forming bacterium designated Y3L14T was isolated from the saline-alkaline soil of a farmland, Inner Mongolia, northern China. Strain Y3L14T could grow at 10-40 °C (optimally at 30 °C), pH 6.0-10.0 (optimally at pH 8.0), and in the presence of 0-6.0 % (w/v) NaCl (optimally with 0-2.0 %). Phylogenetic analysis based on the 16S rRNA gene and DNA gyrase subunit B (gyrB) gene sequences revealed that strain Y3L14T clustered with strains belonging to the genus Sphingobacterium, sharing the highest 16S rRNA gene sequence similarity with Sphingobacterium lactis WCC 4512T (94.99 %). Its major cellular fatty acids contained iso-C15 : 0, C16 : 0, iso-C17 : 0 3-OH and summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c). Menaquinone-7 (MK-7) was the only isoprenoid quinone. Strain Y3L14T contained phosphatidylethanolamine, sphingophospholipid, two unknown phospholipids and three unknown lipids as the major polar lipids. The genomic DNA G+C content of strain Y3L14T was 36.0 mol%. Based on the phenotypic, phylogenetic and genotypic characteristics, strain Y3L14T represents a novel species within the genus Sphingobacterium, for which Sphingobacterium alkalisoli sp. nov. is proposed; the type strain is Y3L14T (=CGMCC 1.15782T=KCTC 52379T).


Assuntos
Álcalis , Filogenia , Salinidade , Microbiologia do Solo , Sphingobacterium/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Concentração de Íons de Hidrogênio , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sphingobacterium/genética , Sphingobacterium/isolamento & purificação , Vitamina K 2/análogos & derivados , Vitamina K 2/química
2.
Front Microbiol ; 7: 1428, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27667989

RESUMO

Taking natural coal as a "seed bank" of bacterial strains able to degrade lignin that is with molecular structure similar to coal components, we isolated 393 and 483 bacterial strains from a meager lean coal sample from Hancheng coalbed and a brown coal sample from Bayannaoer coalbed, respectively, by using different media. Statistical analysis showed that isolates were significantly more site-specific than medium-specific. Of the 876 strains belonging to 27 genera in Actinobacteria, Firmicutes, and Proteobacteria, 612 were positive for lignin degradation function, including 218 strains belonging to 35 species in Hancheng and 394 strains belonging to 19 species in Zhongqi. Among them, the dominant lignin-degrading strains were Thauera (Hancheng), Arthrobacter (Zhongqi) and Rhizobium (both). The genes encoding the laccases- or laccase-like multicopper oxidases, key enzymes in lignin production and degradation, were detected in three genera including Massila for the first time, which was in high expression by real time PCR (qRT-PCR) detection, confirming coal as a good seed bank.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...