Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Mol Med ; 26(3): 593-600, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33470050

RESUMO

The recovery of blood supply after a period of myocardial ischaemia does not restore the heart function and instead results in a serious dysfunction called myocardial ischaemia-reperfusion injury (IRI), which involves several complex pathophysiological processes. Mitochondria have a wide range of functions in maintaining the cellular energy supply, cell signalling and programmed cell death. When mitochondrial function is insufficient or disordered, it may have adverse effects on myocardial ischaemia-reperfusion and therefore mitochondrial dysfunction caused by oxidative stress a core molecular mechanism of IRI. Peroxisome proliferator-activated receptor gamma co-activator 1α (PGC-1α) is an important antioxidant molecule found in mitochondria. However, its role in IRI has not yet been systematically summarized. In this review, we speculate the role of PGC-1α as a key regulator of mitonuclear communication, which may interacts with nuclear factor, erythroid 2 like -1 and -2 (NRF-1/2) to inhibit mitochondrial oxidative stress, promote the clearance of damaged mitochondria, enhance mitochondrial biogenesis, and reduce the burden of IRI.


Assuntos
Traumatismo por Reperfusão Miocárdica , Humanos , Mitocôndrias/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Biogênese de Organelas , Estresse Oxidativo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Transdução de Sinais
2.
Hum Cell ; 35(1): 63-82, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34807408

RESUMO

This study is to investigate the underlying mechanisms of mitochondrial quality control (MQC) regulated by HtrA2/Omi during ischemia/reperfusion (I/R). We utilized the mnd2 mouse model, which has a missense mutation in HtrA2/Omi, to investigate the HtrA2/Omi regulation in mitochondria after I/R injury in the cerebral cortex. Compared to homozygous (HtrA2mnd2) mice, heterozygous (HtrA2Hetero) mice showed aging signs at a later age, increased HtrA2/Omi expression in the brain cortex, and lesser neurodegenerative signs. The brain cortex of HtrA2Hetero mice had increased superoxide dismutase (SOD) activity; lower levels of malondialdehyde (MDA); higher expressions of mitochondrial unfolded protein response (mtUPR)-related proteins, NADH dehydrogenase [ubiquinone] iron-sulfur protein 7 (Ndufs7), and uncoupling protein 2 (UCP2) proteins; more mitochondrial fission; higher levels of ATP and mtDNA copies; elevated sirtuin 3 (SIRT3) activity; and increased NAD+/NADH ratio. After 1.5 h of I/R, the brain cortex of HtrA2Hetero mice had a larger infarction size, reduced HtrA2/Omi expression, decreased S-X-linked inhibitor of apoptosis protein (XIAP), and increased C-Caspase3 than that of wild-type animals (WT). Mitochondria from the HtrA2Hetero brain cortex showed decreased ATP production and MQC deficiency after 1.5 h I/R. Genipin pre-treatment reduced the aforementioned I/R injury in the HtrA2Hetero brain cortex. In conclusion, mitochondrial function is compensated in the HtrA2Hetero brain cortex via the upregulation of the UCP2-SIRT3-PGC1 axis. Decreased HtrA2/Omi function damages mitochondrial quality in the HtrA2Hetero mouse brain cortex, leading to more brain I/R injury. Genipin pre-treatment ameliorates brain damages via the mitochondrial UCP2-SIRT3-PGC1 axis.


Assuntos
Reprogramação Celular/genética , Córtex Cerebral/metabolismo , Serina Peptidase 2 de Requerimento de Alta Temperatura A/fisiologia , Hipóxia Encefálica/genética , Hipóxia Encefálica/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Sirtuína 3/metabolismo , Proteína Desacopladora 2/metabolismo , Animais , Modelos Animais de Doenças , Camundongos Transgênicos
3.
Cancer Cell Int ; 20: 128, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32322174

RESUMO

Cisplatin is a platinum-based first-line drug for treating ovarian cancer. However, chemotherapy tolerance has limited the efficacy of cisplatin for ovarian cancer patients. Research has demonstrated that cisplatin causes changes in cell survival and death signaling pathways through its interaction with macromolecules and organelles, which indicates that investigation into the DNA off-target effects of cisplatin may provide critical insights into the mechanisms underlying drug resistance. The multifunctional protein p62 works as a signaling hub in the regulation of pro-survival transcriptional factors NF-κB and Nrf2 and connects autophagy and apoptotic signals, which play important roles in maintaining cell homeostasis. In this review, we discuss the role of p62 in cisplatin resistance by exploring p62-associated signaling pathways based on current studies and our work. Insights into these resistance mechanisms may lead to more effective therapeutic strategies for ovarian cancer by targeting p62.

4.
Cancer Manag Res ; 12: 621-631, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32095083

RESUMO

PURPOSE: A lack of early diagnostic biomarkers and therapeutic targets has led to poor prognosis for gastric cancer patients. However, the analysis of cancer-associated genomic data has been shown to be effective in identifying potential markers. Recently, the long non-coding RNA LINC00365 and SCGB2A1 gene (as known as mammaglobin B) were predicted to be co-expressed in gastric cancer based on the Gene Expression Omnibus database. However, their precise role in gastric cancer tumors is still not clear. METHODS: The expressions of LINC00365 and SCGB2A1 in gastric cancer tissues were investigated using qPCR and their expressions were detected in a gastric cancer tissue microarray by in situ hybridization and immunohistochemical staining. The functions of LINC00365 in BGC-823 and MGC-803 gastric cancer cells were tested using the MTT assay, flow cytometry, colony formation assay, EDU staining, immunofluorescence and luciferase assay. RESULTS: We found that LINC00365 and SCGB2A1 mRNA were both expressed at low levels in 30 cases of gastric cancer. Gastric cancer tissue microarray analysis indicated that LINC00365 and SCGB2A1 were expressed at low levels in tumor tissue, and low expression of both factors correlated with shorter survival time. Functional studies showed that LINC00365 overexpression significantly inhibited gastric cancer cell viability through the impairment of proliferation rather than the promotion of apoptosis. Furthermore, overexpressed LINC00365 upregulated SCGB2A1 in gastric cancer cell lines. Immuno-fluorescence and luciferase assay analysis indicated that LINC00365 overexpression inhibited the NF-κB pro-survival signaling pathway. Consistent with the effects of LINC00365, SCGB2A1 upregulation also reduced cell survival and inactivated NF-κB. CONCLUSION: Collectively, our findings revealed that SCGB2A1 may be the target coding protein regulated by LINC00365 in gastric cancer. LINC00365 and SCGB2A1 may function as tumor suppressors and may serve as potential prognostic and therapeutic markers in gastric cancer treatment.

5.
Front Aging Neurosci ; 11: 313, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31780922

RESUMO

Neurodegenerative diseases are disorders that are characterized by a progressive decline of motor and/or cognitive functions caused by the selective degeneration and loss of neurons within the central nervous system. The most common neurodegenerative diseases are Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Neurons have high energy demands, and dysregulation of mitochondrial quality and function is an important cause of neuronal degeneration. Mitochondrial quality control plays an important role in maintaining mitochondrial integrity and ensuring normal mitochondrial function; thus, defects in mitochondrial quality control are also significant causes of neurodegenerative diseases. The mitochondrial deacetylase SIRT3 has been found to have a large effect on mitochondrial function. Recent studies have also shown that SIRT3 has a role in mitochondrial quality control, including in the refolding or degradation of misfolded/unfolded proteins, mitochondrial dynamics, mitophagy, and mitochondrial biogenesis, all of which are affected in neurodegenerative diseases.

6.
J Cell Mol Med ; 23(6): 4030-4042, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30941888

RESUMO

Increasing evidence suggests that p62/SQSTM1 functions as a signalling centre in cancer. However, the role of p62 in tumour development depends on the interacting factors it recruits and its precise regulatory mechanism remains unclear. In this study, we investigated the pro-death signalling recruitment of p62 with the goal of improving anti-tumour drug effects in ovarian cancer treatment. We found that p62 with Caspase 8 high expression is correlated with longer survival time compared with cases of low Caspase 8 expression in ovarian cancer. In vivo experiments suggested that insoluble p62 and ubiquitinated protein accumulation induced by autophagy impairment promoted the activation of Caspase 8 and increased cell sensitivity to cisplatin. Furthermore, p62 functional domain UBA and LIR mutants regulated autophagic flux and attenuated Caspase 8 activation, which indicates that autophagic degradation is involved in p62-mediated activation of Caspase 8 in ovarian cancer cells. Collectively, our study demonstrates that p62 promotes Caspase 8 activation through autophagy flux blockage with cisplatin treatment. We have provided evidence that autophagy induction followed by its blockade increases cell sensitivity to chemotherapy which is dependent on p62-Caspase 8 mediated apoptosis signalling. p62 exhibits pro-death functions through its interaction with Caspase 8. p62 and Caspase 8 may become novel prognostic biomarkers and oncotargets for ovarian cancer treatment.


Assuntos
Caspase 8/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Proteínas de Ligação a RNA/metabolismo , Idoso , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Cisplatino/uso terapêutico , Progressão da Doença , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
7.
Cancer Med ; 8(5): 2462-2473, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30972978

RESUMO

Metabolic reprogramming is a central hallmark of cancer. Therefore, targeting metabolism may provide an effective strategy for identifying promising drug targets for cancer treatment. In prostate cancer, cells undergo metabolic transformation from zinc-accumulating, citrate-producing cells to citrate-oxidizing malignant cells with lower zinc levels and higher mitochondrial aconitase (ACO2) activity. ACO2 is a Krebs cycle enzyme that converts citrate to isocitrate and is sensitive to reactive oxygen species (ROS)-mediated damage. In this study, we found that the expression of ACO2 is positively correlated with the malignancy of prostate cancer. Both zinc and p53 can lead to an increase in ROS. ACO2 can be a target for remodeling metabolism by sensing changes in the ROS levels of prostate cancer. Our results indicate that targeting ACO2 through zinc and p53 can change prostate cancer metabolism, and thus provides a potential new therapeutic strategy for prostate cancer.


Assuntos
Aconitato Hidratase/metabolismo , Paclitaxel/administração & dosagem , Neoplasias da Próstata/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/administração & dosagem , Zinco/administração & dosagem , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Células PC-3 , Paclitaxel/farmacologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteína Supressora de Tumor p53/farmacologia , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Zinco/farmacologia
8.
Prostate ; 79(6): 647-656, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30714183

RESUMO

BACKGROUND: Paclitaxel (PTX) is a first-line chemotherapeutic drug for the treatment of prostate cancer. However, most patients develop resistance and metastasis, and thus new therapeutic approaches are urgently required. Recent studies have identified widespread anti-tumor effects of zinc (Zn) in various tumor cell lines, especially prostate cancer cells. In this study, we examined the effects of Zn as an adjuvant to PTX in prostate cancer cells. METHODS: PC3 and DU145 cells were treated with different concentrations of Zn and/or PTX. MTT assay was used to detect cell viability. Real-time cell analysis (RTCA) and microscopy were used to observe morphological changes in cells. Western blotting was used to detect the expression of epithelial-mesenchymal transition (EMT)-related proteins. qPCR (reverse transcription-polymerase chain reaction) was used to examine changes in TWIST1 mRNA levels. Cell invasion and migration were detected by scratch and transwell assays. shRNA against TWIST1 was used to knockdown TWIST1. Colony formation assay was used to detect cell proliferation, while Annexin V and propidium iodide (PI) staining was used to detect cell apoptosis. RESULTS: Zn and PTX increased proliferation inhibition in a dose- and time-dependent manner in prostate cancer cells, while Zn increased prostate cancer cell chemosensitivity to PTX. Combined Zn and PTX inhibited prostate cancer cell invasion and migration by downregulating the expression of TWIST1. Furthermore, knockdown of TWIST1 increased the sensitivity of prostate cancer cells to PTX. In addition, Zn and PTX reduced cell proliferation and induced apoptosis in prostate cancer cells. CONCLUSIONS: Our results demonstrated that Zn and PTX combined therapy inhibits EMT by reducing the expression of TWIST1, which reduces the invasion and migration of prostate cancer cells. SiTWIST1 increased the sensitivity of prostate cancer cells to PTX. In addition, with prolonged treatment, Zn and PTX inhibited proliferation and led to prostate cancer cell apoptosis. Therefore, Zn may be a potential adjuvant of PTX in treating prostate cancer and combined treatment may offer a promising therapeutic strategy for prostate cancer.


Assuntos
Apoptose/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Paclitaxel/farmacologia , Próstata , Neoplasias da Próstata , Zinco , Adjuvantes Farmacêuticos/metabolismo , Adjuvantes Farmacêuticos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Proteínas Nucleares/metabolismo , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteína 1 Relacionada a Twist/metabolismo , Zinco/metabolismo , Zinco/farmacologia
9.
Exp Cell Res ; 374(1): 249-258, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30528266

RESUMO

Many cell death regulators physically or functionally interact with metabolic enzymes. These interactions provide insights into mechanisms of anticancer treatments from the perspective of tumor cell metabolism and apoptosis. Recent studies have shown that zinc and p53 not only induce tumor cell apoptosis, but also regulate tumor cell metabolism. However, the underlying mechanism is complex and remains unclear, making further research imperative to provide clues for future cancer treatments. In this study, we found that hexokinase 2 (HK2), which has dual metabolic and apoptotic functions, is downstream of zinc and p53 in both prostate cancer patient tissue and prostate cancer cell lines. Notably, the mitochondrial location of HK2 is crucial for its function. We demonstrate that zinc and p53 disrupt mitochondrial binding of HK2 in prostate cancer cells by phosphorylating VDAC1, which is mediated by protein kinase B (Akt) inhibition and glycogen synthase kinase 3ß (GSK3ß) activation. In addition, we found that zinc combined with p53 significantly inhibited tumor growth in a prostate cancer cell xenograft model. Therefore, interference of the mitochondrial localization of HK2 by zinc and p53 may provide a new treatment approach for cancer.


Assuntos
Hexoquinase/metabolismo , Mitocôndrias/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Zinco/metabolismo , Animais , Apoptose , Linhagem Celular Tumoral , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Masculino , Potencial da Membrana Mitocondrial , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosforilação , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Eur J Pharmacol ; 845: 56-64, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30582911

RESUMO

Cerebral ischemia-reperfusion injury is a thorny issue in the treatment of stroke. Energy depletion and oxidative stress are the core mechanisms underlying cerebral ischemia-reperfusion injury. Mitochondrial function is involved in energy production and oxidative stress. It has been reported that mitochondrial uncoupling protein 2 (UCP2) may be involved in the regulation of cerebral ischemia-reperfusion injury. We hypothesized that UCP2 can regulate cerebral ischemia-reperfusion injury by regulating energy supply and oxidative stress. To test this hypothesis, we used a middle cerebral artery occlusion model in male C57BL/6 mice with/without genipin--an UCP2-specific inhibitor. We measured the expression and/or activity of UCP2, SIRT3, the level of ATP, and antioxidant-related molecules in the cerebral cortex and the LDH in serum after ischemia-reperfusion, the level of apoptosis was reflected by the level of cleaved-caspase3 and tunel staining. The results showed an increase in the expression of UCP2, coinciding with an increase in the level of apoptosis, NAD+/NADH ratio, SIRT3 activity, LDH release and a decrease in the level of ATP and antioxidant-related molecules after 1 h of ischemia and 24 h of reperfusion. These findings suggest that UCP2 may regulate energy supply and oxidative stress in ischemia-reperfusion injury. Interestinly, above changes can be reserved by administration of genipin with the brain damage level going down. In conclusion, the UCP2-SIRT3 signaling pathway is involved in the regulation of cerebral ischemia-reperfusion injury as a bridge between energy metabolism and oxidative stress. Genipin protects against cerebral ischemia-reperfusion injury by inhibiting UCP2.


Assuntos
Iridoides/uso terapêutico , Mitocôndrias/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Traumatismo por Reperfusão/prevenção & controle , Sirtuína 3/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Proteína Desacopladora 2/metabolismo , Animais , Apoptose , Metabolismo Energético , Iridoides/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Espécies Reativas de Oxigênio , Transdução de Sinais
11.
Exp Cell Res ; 367(2): 137-149, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29580688

RESUMO

Increasing evidence suggests that mitochondrial respiratory chain complex I participates in carcinogenesis and cancer progression by providing energy and maintaining mitochondrial function. However, the role of complex I in ovarian cancer is largely unknown. In this study we showed that metformin, considered to be an inhibitor of complex I, simultaneously inhibited cell growth and induced mitochondrial-related apoptosis in human ovarian cancer cells. Metformin interrupted cellular energy metabolism mainly by causing damage to complex I that impacted mitochondrial function. Additionally, treatment with metformin increased the activation of sirtuin 3 (SIRT3), a mitochondrial deacetylase. We demonstrated that SIRT3 overexpression aggravated metformin-induced apoptosis, energy stress and mitochondrial dysfunction. Moreover, treatment with metformin or SIRT3 overexpression increased activation of AMP-activated protein kinase (AMPK), a major sensor of cellular energy status. AMPK compensated for energy loss by increasing glycolysis. The impact of this was assessed by reducing glucose levels in the media or by using inhibitors (2-deoxyglucose, Compound C) of glycolysis and AMPK. The combination of these factors with metformin intensified cytotoxicity through further downregulation of ATP. Our study outlines an important role for SIRT3 in the antitumor effect of mitochondrial complex I inhibitors in human ovarian cancer cells. This effect appears to be mediated by induction of energy stress and apoptosis. Strategies that target the mitochondria could be enhanced by modulating glycolysis to further aggravate energy stress that may increase the antitumor effect.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Metformina/farmacologia , Mitocôndrias/efeitos dos fármacos , Neoplasias Ovarianas/metabolismo , Sirtuína 3/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Linhagem Celular Tumoral , Complexo I de Transporte de Elétrons/metabolismo , Feminino , Glucose/metabolismo , Humanos , Mitocôndrias/metabolismo , Neoplasias Ovarianas/patologia , Sirtuína 3/biossíntese , Estresse Fisiológico
12.
Int J Mol Sci ; 18(7)2017 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-28737710

RESUMO

Recovered blood supply after cerebral ischemia for a certain period of time fails to restore brain function, with more severe dysfunctional problems developing, called cerebral ischemia-reperfusion injury (CIR). CIR involves several extremely complex pathophysiological processes in which the interactions between key factors at various stages have not been fully elucidated. Mitochondrial dysfunction is one of the most important mechanisms of CIR. The mitochondrial deacetylase, sirtuin 3 (SIRT3), can inhibit mitochondrial oxidative stress by deacetylation, to maintain mitochondrial stability. Uncoupling protein 2 (UCP2) regulates ATP (Adenosine triphosphate) and reactive oxygen species production by affecting the mitochondrial respiratory chain, which may play a protective role in CIR. Finally, we propose that UCP2 regulates the activity of SIRT3 through sensing the energy level and, in turn, maintaining the mitochondrial steady state, which demonstrates a cytoprotective effect on CIR.


Assuntos
Encefalopatias/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Traumatismo por Reperfusão/metabolismo , Sirtuína 3/metabolismo , Proteína Desacopladora 2/metabolismo , Animais , Encefalopatias/patologia , Humanos , Mitocôndrias/patologia , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/patologia
13.
Cancer Sci ; 108(7): 1405-1413, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28498503

RESUMO

Platinum-based therapeutic strategies have been widely used in ovarian cancer treatment. However, drug resistance has greatly limited therapeutic efficacy. Recently, tolerance to cisplatin has been attributed to other factors unrelated to DNA. p62 (also known as SQSTM1) functions as a multifunctional hub participating in tumorigenesis and may be a therapeutic target. Our previous study showed that p62 was overexpressed in drug-resistant ovarian epithelial carcinoma and its inhibition increased the sensitivity to cisplatin. In this study, we demonstrate that the activity of the NF-κB signaling pathway and K63-linked ubiquitination of RIP1 was higher in cisplatin-resistant ovarian (SKOV3/DDP) cells compared with parental cells. In addition, cisplatin resistance could be reversed by inhibiting the expression of p62 using siRNA. Furthermore, deletion of the ZZ domain of p62 that interacts with RIP1 in SKOV3 cells markedly decreased K63-linked ubiquitination of RIP1 and inhibited the activation of the NF-κB signaling pathway. Moreover, loss of the ZZ domain from p62 led to poor proliferative capacity and high levels of apoptosis in SKOV3 cells and made them more sensitive to cisplatin treatment. Collectively, we provide evidence that p62 is implicated in the activation of NF-κB signaling that is partly dependent on RIP1. p62 promotes cell proliferation and inhibits apoptosis thus mediating drug resistance in ovarian cancer cells.


Assuntos
Resistencia a Medicamentos Antineoplásicos/fisiologia , NF-kappa B/metabolismo , Neoplasias Epiteliais e Glandulares/patologia , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Neoplasias Ovarianas/patologia , Proteínas de Ligação a RNA/metabolismo , Proteína Sequestossoma-1/metabolismo , Antineoplásicos/farmacologia , Western Blotting , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Cisplatino/farmacologia , Feminino , Citometria de Fluxo , Imunofluorescência , Humanos , Imunoprecipitação , Microscopia Confocal , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Ovarianas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais
14.
Int J Oncol ; 49(2): 773-84, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27277143

RESUMO

The Bcl-2 antiapoptotic proteins are important cancer therapy targets; however, their role in cancer cell metabolism remains unclear. We found that the BH3-only protein mimetic S1, a novel pan Bcl-2 inhibitor, simultaneously interrupted glucose metabolism and induced apoptosis in human SKOV3 ovarian cancer cells, which was related to the activation of SIRT3, a stress-responsive deacetylase. S1 interrupted the cellular glucose metabolism mainly through causing damage to mitochondrial respiration and inhibiting glycolysis. Moreover, S1 upregulated the gene and protein expression of SIRT3, and induced the translocation of SIRT3 from the nucleus to mitochondria. SIRT3 silencing reversed the effects of S1 on glucose metabolism and apoptosis through increasing the level of HK-II localized to the mitochondria, while a combination of the glycolysis inhibitor 2-DG and S1 intensified the cytotoxicity through further upregulation of SIRT3 expression. This study underscores an essential role of SIRT3 in the antitumor effect of Bcl-2 inhibitors in human ovarian cancer through regulating both metabolism and apoptosis. The manipulation of Bcl-2 inhibitors combined with the use of classic glycolysis inhibitors may be rational strategies to improve ovarian cancer therapy.


Assuntos
Neoplasias Ovarianas/tratamento farmacológico , Fragmentos de Peptídeos/administração & dosagem , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Proteínas Proto-Oncogênicas/administração & dosagem , Sirtuína 3/biossíntese , Apoptose/efeitos dos fármacos , Biomimética , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , RNA Interferente Pequeno/genética , Sirtuína 3/antagonistas & inibidores
15.
Oncol Rep ; 35(6): 3471-9, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27035858

RESUMO

As targets for cancer therapy, endoplasmic reticulum (ER) stress and autophagy are closely linked. However, the signaling pathways responsible for induction of autophagy in response to ER stress and its cellular consequences appear to vary with cell type and stimulus. In the present study, we showed that dithiothreitol (DTT) induced ER stress in HeLa cells in a time- and dose-dependent fashion. With increased ER stress, reactive oxygen species (ROS) production increased and autophagy flux, assessed by intracellular accumulation of LC3B-II and p62, was inhibited. N-acetyl-L-cysteine (NAC), a classic antioxidant, exacerbated cell death induced by 3.2 mM of DTT, but attenuated that induced by 6.4 mM DTT. Low cytotoxic doses of DTT transiently activated c-JNU N-terminal kinase (JNK) and p38, whereas high dose of DTT persistently activated JNK and p38 and simultaneously reduced extracellular signal-regulated kinase (ERK) activity. Combined treatment with DTT and U0126, an inhibitor of ERK upstream activators mitogen-activated protein kinase (MAPK) kinase 1 and 2 (MEK1/2), blocked autophagy flux in HeLa cells. This effect was similar to that caused by a combination of DTT and chloroquine (CQ). These data suggested that insufficient autophagy was accompanied by increased ROS production during DTT-induced ER stress. ROS appeared to regulate MAPK signaling, switching from a pro-survival to a pro-apoptotic signal as ER stress increased. ERK inhibition by ROS during severe ER stress blocked autophagic flux. Impaired autophagic flux, in turn, aggravated ER stress, ultimately leading to cell death. Taken together, our data provide the first reported evidence that ROS may control cell fate through regulating the MAPK pathways and autophagic flux during DTT-induced ER/oxidative stress.


Assuntos
Autofagia/efeitos dos fármacos , Ditiotreitol/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Células HeLa , Humanos , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia
16.
Biotechnol Lett ; 38(8): 1269-76, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27067355

RESUMO

OBJECTIVES: To investigate the biocompatibility of human gastric carcinoma cells (SGC-7901) with organic two-photon nanoparticles (NPs). RESULTS: Different concentrations of NPs were incubated with SGC-7901 cells for different times. The levels of cell apoptosis, reactive oxygen species (ROS), intracellular calcium, and mitochondrial membrane potential (MMP) were measured by staining the SGC-7901 cells with Annexin V-FITC/PI, 2',7'-dichlorofluorescin diacetate, Fluo-3 AM, and Rhodamine 123, followed by the flow cytometry assay. NPs at <4 µg/ml, did not have any significant effect on apoptosis, necrosis, generation of ROS, increase of intracellular Ca(2+) concentration or decrease of MMP in SGC-7901 cells, but >4 µg/ml had a major effects on all the above mentioned parameters. CONCLUSION: 2,5,2',5'-Tetra(4-N,N-diphenylamine styryl) biphenyl NPs can be used at an appropriate concentration as a safe drug carrier or imaging marker and may serve as an effective tool for developing a photodynamic cancer therapy.


Assuntos
Cálcio/metabolismo , Nanopartículas/química , Espécies Reativas de Oxigênio/metabolismo , Apoptose/fisiologia , Linhagem Celular Tumoral , Humanos , Potencial da Membrana Mitocondrial/fisiologia , Neoplasias Gástricas/metabolismo
17.
Mol Med Rep ; 13(1): 661-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26647757

RESUMO

Previous studies have suggested that endoplasmic reticulum stress (ERS) is one of the mechanisms responsible for the pathogenesis of diabetic nephropathy (DN). Histone acetylation modification can regulate the transcription of genes and is involved in the regulation of ERS. Valproate (VPA), a nonselective histone deacetylase inhibitor, has been reported to have a protective role in kidney tissue injury, however, whether VPA can prevent DN remains to be elucidated. In the present study, it was found that VPA increases the expression of glucose­regulated protein (GRP78) and reduces the protein expression of C/EBP­homologous protein (CHOP), growth arrest and DNA­damage­inducible gene 153 and caspase­12 in a rat model of DN. VPA can reduce renal cell apoptosis and alleviate proteinuria and alterations in serum creatinine. VPA also upregulates the acetylation level of histone H4 in the promoter of GRP78 and downregulates the acetylation level of histone H4 in the promoter of CHOP. Collectively, the data indicate that VPA can relieve ERS and reduce renal cell apoptosis, and thus attenuate renal injury in a rat model of DN by regulating the acetylation level of histone H4 in ERS­associated protein promoters.


Assuntos
Apoptose/efeitos dos fármacos , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/patologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Ácido Valproico/uso terapêutico , Acetilação , Animais , Modelos Animais de Doenças , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/genética , Histonas/metabolismo , Rim/efeitos dos fármacos , Rim/lesões , Rim/patologia , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Regiões Promotoras Genéticas/genética , Ratos Wistar , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , Ácido Valproico/farmacologia
18.
Oncol Rep ; 34(2): 913-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26081590

RESUMO

Sanguinarine (SAN), an alkaloid isolated from plants of the Papaveraceae family, is a compound with multiple biological activities. In the present study, we explored the anticancer properties of SAN in lung cancer using the human lung adenocarcinoma cell line SPC-A1. Our results revealed that SAN inhibited SPC-A1 cell growth and induced apoptosis in a dose-dependent manner. We found that SAN triggered reactive oxygen species (ROS) production, while elimination of ROS by N-acetylcysteine (NAC) reversed the growth inhibition and apoptosis induced by SAN. SAN-induced endoplasmic reticulum (ER) stress resulted in the upregulation of many genes and proteins involved in the unfolded protein response (UPR) pathway, including glucose-regulated protein 78 (GRP78), p-protein kinase R (PKR)-like ER kinase (PERK), p-eukaryotic translation initiation factor 2α (eIF2α), activating transcription factor 4 (ATF4) and CCAAT/enhancer binding protein homologous protein (CHOP). Blocking ER stress with tauroursodeoxycholic acid (TUDCA) markedly reduced SAN-induced inhibition of growth and apoptosis. Furthermore, TUDCA decreased SAN-induced ROS production, and NAC attenuated SAN-induced GRP78 and CHOP expression. Overall, our data indicate that the anticancer effects of SAN in lung cancer cells depend on ROS production and ER stress and that SAN may be a potential agent against lung cancer.


Assuntos
Adenocarcinoma/metabolismo , Benzofenantridinas/farmacologia , Estresse do Retículo Endoplasmático , Isoquinolinas/farmacologia , Neoplasias Pulmonares/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Acetilcisteína/farmacologia , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma de Pulmão , Apoptose , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico
19.
Biomed Res Int ; 2014: 234370, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25177684

RESUMO

Tumor cells overexpress antiapoptotic proteins of the Bcl-2 (B-cell leukemia/lymphoma-2) family, which can lead to both escape from cell death and resistance to chemotherapeutic drugs. Recent studies suggest that the endoplasmic reticulum (ER) can produce proapoptotic signals, amplifying the apoptotic signaling cascade. The crosstalk between mitochondria and ER plays a decisive role in many cellular events but especially in cell death. Bcl-2 family proteins located in the ER and mitochondria can influence not only the function of the two organelles but also the interaction between them. Therefore, the Bcl-2 family of proteins may also be involved in the mechanism of tumor chemotherapy resistance by influencing crosstalk between the ER and mitochondria. In this review we will briefly discuss evidence to support this concept.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptor Cross-Talk , Animais , Antineoplásicos/uso terapêutico , Humanos , Modelos Biológicos , Estresse Fisiológico
20.
J Asian Nat Prod Res ; 16(10): 982-90, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25082464

RESUMO

Two new and six known steroidal glucosides were isolated from the tuber of Ophiopogon japonicus. The new steroidal glucosides were established as (20R,25R)-26-O-ß-d-glucopyranosyl-3ß,26-dihydroxycholest-5-en-16,22-dioxo-3-O-α-l-rhamnopyranosyl-(1 â†’ 2)-ß-d-glucopyranoside (1) and 26-O-ß-d-glucopyranosyl-(25R)-furost-5-en-3ß,14α,17α,22α,26-pentaol-3-O-α-l-rhamnopyranosyl-(1 â†’ 2)-ß-d-glucopyranoside (3) on the basis of spectroscopic data as well as chemical evidence.


Assuntos
Colestenos/isolamento & purificação , Colestenonas/isolamento & purificação , Glucosídeos/isolamento & purificação , Glicosídeos/isolamento & purificação , Ophiopogon/química , Esteroides/isolamento & purificação , Colestenos/química , Colestenonas/química , Glucosídeos/química , Glicosídeos/química , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Tubérculos/química , Estereoisomerismo , Esteroides/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...