Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(46): 53746-53754, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37920991

RESUMO

Excellent energy-absorbing structures have been highly sought after in engineering applications to improve devices and personal safety. The ideal energy absorption mechanism should exhibit characteristics such as lightweight, high energy absorption capacity, and efficient reusability. To address this demand, a novel three-dimensional (3D) chiral lattice structure with compression-twist coupling deformation is fabricated by combining the left and right chiral units. The proposed structure was fabricated in NiTi shape memory alloys (SMAs) by using laser powder bed fusion technology. The compression experiment result indicates that the shape recovery ratio is as high as 94% even when the compression strain is over 80%. Additionally, the platform strain reaches as high as 66%, offering high-level specific energy absorption, i.e., 213.02 J/g. The obtained results are of great significance for basic research and engineering applications of energy-absorbing structures with high deformation recovery ratios.

2.
Microb Ecol ; 81(4): 1018-1028, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33219851

RESUMO

Mollisols are extremely important soil resource for crop and forage production. In northeast China, it is a major land use management practice from dry land crops to irrigated rice. However, there is few data regarding soil quality and microbial composition in Mollisols during land use transition. Here, we analyzed the upper 30 cm of soil from land with more than 30 years of paddy use and from adjacent areas with upland crops. Our results showed that land use and soil depth had a significant effect on soil properties and enzyme activities. Soil moisture (SM) and soil organic carbon (SOC) contents were substantially higher in paddy fields than in upland crop lands, while nitrogen-related enzyme activities were lower. Following the land use change, bacterial diversity was increased and bacterial community composition changed. Taxonomic analyses showed that Proteobacteria, Chloroflexi, Firmicutes, and Bacteroidetes were the dominant phyla present. At family level, Gemmatimonadaceae decreased with land use change, while Syntrophorhabdaceae and Syntrophacea that play a part in methane cycling and nitrifying bacteria such as Nitrospiraceae increased, indicating that the structure and composition of the bacterial community might be a promising indicator of Mollisol health. Redundancy analysis indicated that land use type had a stronger effect on the soil bacterial community composition than soil depth. Additionally, bacterial community composition was closely associated with soil parameters such as soil moisture, pH, SOC, NO3--N, and NH4+-N. Overall, land use change affects the physical and chemical properties of the soil, resulting in changes in the composition of the soil bacterial community and flora. These changes could provide a view of the bacterial community assembly and functional shifts following land use change.


Assuntos
Oryza , Solo , Agricultura , Carbono/análise , China , RNA Ribossômico 16S , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...