Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(17)2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31480549

RESUMO

Normal mammalian palatogenesis is a complex process that requires the occurrence of a tightly regulated series of specific and sequentially regulated cellular events. Cleft lip/palate (CLP), the most frequent craniofacial malformation birth defects, may occur if any of these events undergo abnormal interference. Such defects not only affect the patients, but also pose a financial risk for the families. In our recent study, the miniature pig was shown to be a valuable alternative large animal model for exploring human palate development by histology. However, few reports exist in the literature to document gene expression and function during swine palatogenesis. To better understand the genetic regulation of palate development, an mRNA expression profiling analysis was performed on miniature pigs, Sus scrofa. Five key developmental stages of miniature pigs from embryonic days (E) 30-50 were selected for transcriptome sequencing. Gene expression profiles in different palate development stages of miniature pigs were identified. Nine hundred twenty significant differentially expressed genes were identified, and the functional characteristics of these genes were determined by gene ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Some of these genes were associated with HH (hedgehog), WNT (wingless-type mouse mammary tumor virus integration site family), and MAPK (mitogen-activated protein kinase) signaling, etc., which were shown in the literature to affect palate development, while some genes, such as HIP (hedgehog interacting protein), WNT16, MAPK10, and LAMC2 (laminin subunit gamma 2), were additions to the current understanding of palate development. The present study provided a comprehensive analysis for understanding the dynamic gene regulation during palate development and provided potential ideas and resources to further study normal palate development and the etiology of cleft palate.


Assuntos
Morfogênese , Palato/crescimento & desenvolvimento , Transdução de Sinais , Porco Miniatura/crescimento & desenvolvimento , Transcriptoma , Animais , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/metabolismo , Sistema de Sinalização das MAP Quinases , Análise de Sequência de RNA , Suínos , Porco Miniatura/genética , Via de Sinalização Wnt
2.
Anat Rec (Hoboken) ; 300(8): 1409-1419, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28296336

RESUMO

Palate development is an important morphogenetic event in facial development, including the fusion of the lateral and medial nasal portions of the frontonasal process and maxilla. Derailments of any of these events may result in cleft palate, the most frequent congenital craniofacial abnormality. Recent research has shown that the microanatomy of the miniature pig oral maxillofacial region is quite similar to that of humans, and the use of miniature pigs as a large animal model for dental and orofacial research is increasing. Little information is available, however, about the development of the miniature pig palate. Here, using histological and ultrastructural methods, we describe the developmental stages of the palate in miniature pigs. Sections from E26, E30, E35, E40, E45, and E50 embryos were stained with hematoxylin-eosin, and selected specimens were also processed for electron microscopy. The development of the miniature pig palate can be divided into four stages: growth of the bilateral palatal shelves alongside the tongue at E30; elevation of the horizontal position above the tongue at E35; establishment of bilateral shelf contact at the midline from E35-50; and a final fusion step at E50, similar to the mouse and human. The histological characteristics of the miniature pig palate at different developmental stages were synchronously verified at the ultrastructural level. Our study provides a piece of first-hand data regarding palate morphological organogenesis in the miniature pig and a foundation for further research with this model to explore mechanisms of cleft palate development. Anat Rec, 300:1409-1419, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Embrião de Mamíferos/anatomia & histologia , Palato/anatomia & histologia , Palato/embriologia , Porco Miniatura/anatomia & histologia , Porco Miniatura/embriologia , Animais , Embrião de Mamíferos/ultraestrutura , Microscopia Eletrônica , Palato/ultraestrutura , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...