Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biol Drug Des ; 101(1): 52-68, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35852446

RESUMO

Polycyclic aromatic hydrocarbons (PAHs), a special class of persistent organic pollutants (POPs) with two or more aromatic rings, have received extensive attention owing to their carcinogenic, mutagenic, and teratogenic effects. Quantitative structure-property relationship (QSPR) is powerful chemometric method to correlate structural descriptors of PAHs with their physicochemical properties. In this manuscript, a QSPR study of PAHs was performed to predict their boiling point (bp), octanol-water partition coefficient (LogKow ), and retention time index (RI). In addition to traditional molecular descriptors, structural fingerprints play an important role in the correlation of the above properties. Three regression methods, partial least squares (PLS), multiple linear regression (MLR), and genetic function approximation (GFA), were used to establish QSPR models for each property of PAHs. The correlation coefficient (R2 test ) and root mean square error (RMSE) of best model were 0.980 and 24.39% (PLS), 0.979 and 35.80% (GFA), 0.926 and 22.90% (MLR) for bp, LogKow, and RI, respectively. The model proposed here can be used to estimate physicochemical properties and inform toxicity prediction of environmental chemicals.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos/química , Água/química , Relação Quantitativa Estrutura-Atividade , Temperatura de Transição , Octanóis , Aprendizado de Máquina
2.
Chem Biol Drug Des ; 101(2): 380-394, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36102275

RESUMO

Given the difficult of experimental determination, quantitative structure-property relationship (QSPR) and deep learning (DL) provide an important tool to predict physicochemical property of chemical compounds. In this paper, partial least squares (PLS), genetic function approximation (GFA), and deep neural network (DNN) were used to predict the Lee retention index (Lee-RI) of PAHs in SE-52 and DB-5 stationary phases. Four molecular descriptors, molecular weight (MW), quantitative estimate of drug-likeness (QED), atomic charge weighted negative surface area (Jurs_PNSA_3), and relative negative charge (Jurs_RNCG) were selected to construct regression models based on genetic algorithm. For SE-52, PLS model showed best prediction power, followed by DNN and GFA. The relative error (RE), root mean square error (RMSE), and regression coefficient (R2 ) of best PLS regression model are 1.228%, 5.407, and 0.980. For DB-5, DNN model showed best prediction power, followed by GFA and PLS. The RE, RMSE and R2 of best DNN regression model for DB-5-1 and DB-5-2 are 1.058%, 4.325%, 0.976%, 0.821%, 3.795%, and 0.970%, respectively. The three regression models not only show good predictive ability, but also highlight the stability and ductility of the models.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Redes Neurais de Computação , Relação Quantitativa Estrutura-Atividade , Análise dos Mínimos Quadrados , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...