Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Biomed Eng ; PP2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700959

RESUMO

OBJECTIVE: Early diagnosis of cardiovascular diseases is a crucial task in medical practice. With the application of computer audition in the healthcare field, artificial intelligence (AI) has been applied to clinical non-invasive intelligent auscultation of heart sounds to provide rapid and effective pre-screening. However, AI models generally require large amounts of data which may cause privacy issues. Unfortunately, it is difficult to collect large amounts of healthcare data from a single centre. METHODS: In this study, we propose federated learning (FL) optimisation strategies for the practical application in multi-centre institutional heart sound databases. The horizontal FL is mainly employed to tackle the privacy problem by aligning the feature spaces of FL participating institutions without information leakage. In addition, techniques based on deep learning have poor interpretability due to their "black-box" property, which limits the feasibility of AI in real medical data. To this end, vertical FL is utilised to address the issues of model interpretability and data scarcity. CONCLUSION: Experimental results demonstrate that, the proposed FL framework can achieve good performance for heart sound abnormality detection by taking the personal privacy protection into account. Moreover, using the federated feature space is beneficial to balance the interpretability of the vertical FL and the privacy of the data. SIGNIFICANCE: This work realises the potential of FL from research to clinical practice, and is expected to have extensive application in the federated smart medical system.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38082647

RESUMO

With the depressive psychiatric disorders becoming more common, people are gradually starting to take it seriously. Somatisation disorders, as a general mental disorder, are rarely accurately identified in clinical diagnosis for its specific nature. In the previous work, speech recognition technology has been successfully applied to the task of identifying somatisation disorders on the Shenzhen Somatisation Speech Corpus. Nevertheless, there is still a scarcity of labels for somatisation disorder speech database. The current mainstream approaches in the speech recognition heavily rely on the well labelled data. Compared to supervised learning, self-supervised learning is able to achieve the same or even better recognition results while reducing the reliance on labelled samples. Moreover, self-supervised learning can generate general representations without the need for human hand-crafted features depending on the different recognition tasks. To this end, we apply self-supervised learning pre-trained models to solve few-labelled somatisation disorder speech recognition. In this study, we compare and analyse the results of three self-supervised learning models (contrastive predictive coding, wav2vec and wav2vec 2.0). The best result of wav2vec 2.0 model achieves 77.0 % unweighted average recall and is significantly better than CPC (p < .005), performing better than the benchmark of the supervised learning model.Clinical relevance- This work proposed a self-supervised learning model to resolve the few-labelled SD speech data, which can be well used for helping psychiatrists with clinical assistant to diagnosis. With this model, psychiatrists no longer need to spend a lot of time labelling SD speech data.


Assuntos
Distúrbios da Fala , Fala , Humanos , Benchmarking , Bases de Dados Factuais , Aprendizado de Máquina Supervisionado
3.
Artigo em Inglês | MEDLINE | ID: mdl-38083307

RESUMO

Cardiovascular diseases (CVDs) are the leading cause of death globally. Heart sound signal analysis plays an important role in clinical detection and physical examination of CVDs. In recent years, auxiliary diagnosis technology of CVDs based on the detection of heart sound signals has become a research hotspot. The detection of abnormal heart sounds can provide important clinical information to help doctors diagnose and treat heart disease. We propose a new set of fractal features - fractal dimension (FD) - as the representation for classification and a Support Vector Machine (SVM) as the classification model. The whole process of the method includes cutting heart sounds, feature extraction, and classification of abnormal heart sounds. We compare the classification results of the heart sound waveform (time domain) and the spectrum (frequency domain) based on fractal features. Finally, according to the better classification results, we choose the fractal features that are most conducive for classification to obtain better classification performance. The features we propose outperform the widely used features significantly (p < .05 by one-tailed z-test) with a much lower dimension.Clinical relevance-The heart sound classification model based on fractal provides a new time-frequency analysis method for heart sound signals. A new effective mechanism is proposed to explore the relationship between the heart sound acoustic properties and the pathology of CVDs. As a non-invasive diagnostic method, this work could supply an idea for the preliminary screening of cardiac abnormalities through heart sounds.


Assuntos
Doenças Cardiovasculares , Cardiopatias , Ruídos Cardíacos , Humanos , Fractais , Auscultação Cardíaca
4.
Artigo em Inglês | MEDLINE | ID: mdl-38083586

RESUMO

Cardiovascular diseases (CVDs) are the number one cause of death worldwide. In recent years, intelligent auxiliary diagnosis of CVDs based on computer audition has become a popular research field, and intelligent diagnosis technology is increasingly mature. Neural networks used to monitor CVDs are becoming more complex, requiring more computing power and memory, and are difficult to deploy in wearable devices. This paper proposes a lightweight model for classifying heart sounds based on knowledge distillation, which can be deployed in wearable devices to monitor the heart sounds of wearers. The network model is designed based on Convolutional Neural Networks (CNNs). Model performance is evaluated by extracting Mel Frequency Cepstral Coefficients (MFCCs) features from the PhysioNet/CinC Challenge 2016 dataset. The experimental results show that knowledge distillation can improve a lightweight network's accuracy, and our model performs well on the test set. Especially, when the knowledge distillation temperature is 7 and the weight α is 0.1, the accuracy is 88.5 %, the recall is 83.8 %, and the specificity is 93.6 %.Clinical relevance- A lightweight model of heart sound classification based on knowledge distillation can be deployed on various hardware devices for timely monitoring and feedback of the physical condition of patients with CVDs for timely provision of medical advice. When the model is deployed on the medical instruments of the hospital, the condition of severe and hospitalised patients can be timely fed back and clinical treatment advice can be provided to the clinicians.


Assuntos
Doenças Cardiovasculares , Aprendizado Profundo , Ruídos Cardíacos , Dispositivos Eletrônicos Vestíveis , Humanos , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...