Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Des Devel Ther ; 18: 2715-2727, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974122

RESUMO

Hepatic fibrosis (HF) is a pathological process of structural and functional impairment of the liver and is a key component in the progression of chronic liver disease. There are no specific anti-hepatic fibrosis (anti-HF) drugs, and HF can only be improved or prevented by alleviating the cause. Autophagy of hepatic stellate cells (HSCs) is closely related to the development of HF. In recent years, traditional Chinese medicine (TCM) has achieved good therapeutic effects in the prevention and treatment of HF. Several active ingredients from TCM (AITCM) can regulate autophagy in HSCs to exert anti-HF effects through different pathways, but relevant reviews are lacking. This paper reviewed the research progress of AITCM regulating HSCs autophagy against HF, and also discussed the relationship between HSCs autophagy and HF, pointing out the problems and limitations of the current study, in order to provide references for the development of anti-HF drugs targeting HSCs autophagy in TCM. By reviewing the literature in PubMed, Web of Science, Embase, CNKI and other databases, we found that the relationship between autophagy of HSCs and HF is currently controversial. HSCs autophagy may promote HF by consuming lipid droplets (LDs) to provide energy for their activation. However, in contrast, inducing autophagy in HSCs can exert the anti-HF effect by stimulating their apoptosis or senescence, reducing type I collagen accumulation, inhibiting the extracellular vesicles release, degrading pro-fibrotic factors and other mechanisms. Some AITCM inhibit HSCs autophagy to resist HF, with the most promising direction being to target LDs. While, others induce HSCs autophagy to resist HF, with the most promising direction being to target HSCs apoptosis. Future research needs to focus on cell targeting research, autophagy targeting research and in vivo verification research, and to explore the reasons for the contradictory effects of HSCs autophagy on HF.


Assuntos
Autofagia , Medicamentos de Ervas Chinesas , Células Estreladas do Fígado , Cirrose Hepática , Medicina Tradicional Chinesa , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Autofagia/efeitos dos fármacos , Humanos , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Cirrose Hepática/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Animais
2.
Ann Hepatol ; 27(6): 100745, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35964909

RESUMO

INTRODUCTION AND OBJECTIVES: Hepatitis B surface antigen (HBsAg) clearance, indicating functional cure or resolved chronic hepatitis B (CHB), remains difficult to achieve via nucleos(t)ide analogue monotherapy. We investigated whether metformin add-on therapy could help achieve this goal in entecavir-treated patients with hepatitis B e antigen (HBeAg)-negative CHB. PATIENTS AND METHODS: Patients with HBeAg-negative CHB who met eligibility criteria (entecavir treatment for > 12 months, HBsAg < 1000 IU/mL) were randomly assigned (1:1) to receive 24 weeks of either metformin (1000 mg, oral, once a day) or placebo (oral, once a day) add-on therapy. The group allocation was blinded for both patients and investigators. Efficacy and safety analyses were based on the intention-to-treat set. The primary outcome, serum HBsAg level (IU/mL) at weeks 24 and 36, was analysed using mixed models. RESULTS: Sixty eligible patients were randomly assigned to the metformin (n = 29) and placebo (n = 31) groups. There was no substantial between-group difference in the HBsAg level at week 24 (adjusted mean difference 0.05, 95% confidence interval -0.04 to 0.13, p = 0.278) or week 36 (0.06, -0.03 to 0.15, p = 0.187), and no significant effect of group-by-time interaction on the HBsAg level throughout the trial (p = 0.814). The occurrence of total adverse events between the two groups was comparable (9 [31.0%] of 29 vs. 5 [16.1%] of 31, p = 0.227) and no patient experienced serious adverse events during the study. CONCLUSION: Although it was safe, metformin add-on therapy did not accelerate HBsAg clearance in entecavir-treated patients with HBeAg-negative CHB.


Assuntos
Hepatite B Crônica , Metformina , Humanos , Hepatite B Crônica/diagnóstico , Hepatite B Crônica/tratamento farmacológico , Antígenos E da Hepatite B , Antígenos de Superfície da Hepatite B , Metformina/efeitos adversos , Antivirais/efeitos adversos , DNA Viral , Vírus da Hepatite B/genética , Resultado do Tratamento
3.
Int J Mol Sci ; 23(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35216388

RESUMO

Phosphorus is an essential macronutrient for plants. The phosphate (Pi) concentration in soil solutions is typically low, and plants always suffer from low-Pi stress. During Pi starvation, a number of adaptive mechanisms in plants have evolved to increase Pi uptake, whereas the mechanisms are not very clear. Here, we report that an ubiquitin E3 ligase, PRU2, modulates Pi acquisition in Arabidopsis response to the low-Pi stress. The mutant pru2 showed arsenate-resistant phenotypes and reduced Pi content and Pi uptake rate. The complementation with PRU2 restored these to wild-type plants. PRU2 functioned as an ubiquitin E3 ligase, and the protein accumulation of PRU2 was elevated during Pi starvation. PRU2 interacted with a kinase CK2α1 and a ribosomal protein RPL10 and degraded CK2α1 and RPL10 under low-Pi stress. The in vitro phosphorylation assay showed that CK2α1 phosphorylated PHT1;1 at Ser-514, and prior reports demonstrated that the phosphorylation of PHT1;1 Ser-514 resulted in PHT1;1 retention in the endoplasmic reticulum. Then, the degradation of CK2α1 by PRU2 under low-Pi stress facilitated PHT1;1 to move to the plasma membrane to increase Arabidopsis Pi uptake. Taken together, this study demonstrated that the ubiquitin E3 ligase-PRU2-was an important positive regulator in modulating Pi acquisition in Arabidopsis response to low-Pi stress.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Transporte Biológico/fisiologia , Fosfatos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Arseniatos/metabolismo , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Transporte de Fosfato/metabolismo , Fósforo/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitinas/metabolismo
4.
Plant Cell ; 32(11): 3519-3534, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32958562

RESUMO

Phosphorus and nitrogen are essential macronutrients for plant growth and crop production. During phosphate (Pi) starvation, plants enhanced Pi but reduced nitrate (NO3 -) uptake capacity, and the mechanism is unclear. Here, we show that a GARP-type transcription factor NITRATE-INDUCIBLE, GARP-TYPE TRANSCRIPTIOANL REPRESSOR1.2 (NIGT1.2) coordinately modulates Pi and NO3 - uptake in response to Pi starvation. Overexpression of NIGT1.2 increased Pi uptake capacity but decreased NO3 - uptake capacity in Arabidopsis (Arabidopsis thaliana). Furthermore, the nigt1.1 nigt1.2 double mutant displayed reduced Pi uptake but enhanced NO3 - uptake under low-Pi stress. During Pi starvation, NIGT1.2 directly up-regulated the transcription of the Pi transporter genes PHOSPHATE TRANSPORTER1;1 (PHT1;1) and PHOSPHATE TRANSPORTER1;4 (PHT1;4) and down-regulated expression of NO3 - transporter gene NITRATE TRANSPORTER1.1 (NRT1.1) by binding to cis-elements in their promoters. Further genetic assays demonstrated that PHT1;1, PHT1;4, and NRT1.1 were genetically epistatic to NIGT1.2 We also identified similar regulatory pathway in maize (Zea mays). These data demonstrate that the transcription factor NIGT1.2 plays a central role in modulating low-Pi-dependent uptake of Pi and NO3 -, tending toward maintenance of the phosphorus to nitrogen balance in plants during Pi starvation.


Assuntos
Arabidopsis/metabolismo , Nitratos/metabolismo , Fosfatos/metabolismo , Fatores de Transcrição/metabolismo , Zea mays/metabolismo , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Epistasia Genética , Regulação da Expressão Gênica de Plantas , Transportadores de Nitrato , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Nicotiana/genética , Fatores de Transcrição/genética , Zea mays/genética
5.
World J Gastroenterol ; 26(10): 1067-1079, 2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32205997

RESUMO

BACKGROUND: Hepatitis B virus (HBV) infection is the primary cause of hepatitis with chronic HBV infection, which may develop into liver fibrosis, cirrhosis and hepatocellular carcinoma. Detection of early-stage fibrosis related to HBV infection is of great clinical significance to block the progression of liver lesion. Direct liver biopsy is regarded as the gold standard to detect and assess fibrosis; however, this method is invasive and prone to clinical sampling error. In order to address these issues, we attempted to find more convenient and effective serum markers for detecting HBV-induced early-stage liver fibrosis. AIM: To investigate serum N-glycan profiling related to HBV-induced liver fibrosis and verify multiparameter diagnostic models related to serum N-glycan changes. METHODS: N-glycan profiles from the sera of 432 HBV-infected patients with liver fibrosis were analyzed. Significant changed N-glycan levels (peaks) (P < 0.05) in different fibrosis stages were selected in the modeling group, and multiparameter diagnostic models were established based on changed N-glycan levels by logistic regression analysis. The receiver operating characteristic (ROC) curve analysis was performed to evaluate diagnostic efficacy of N-glycans models. These models were then compared with the aspartate aminotransferase to platelet ratio index (APRI) , fibrosis index based on the four factors (FIB-4), glutamyltranspeptidase platelet albumin index (S index), GlycoCirrho-test, and GlycoFibro-test. Furthermore, we combined multiparameter diagnostic models with alanine aminotransferase (ALT) and platelet (PLT) tests and compared their diagnostic power. In addition, the diagnostic accuracy of N-glycan models was also verified in the validation group of patients. RESULTS: Multiparameter diagnostic models constructed based on N-glycan peak 1, 3, 4 and 8 could distinguish between different stages of liver fibrosis. The area under ROC curves (AUROCs) of Model A and Model B were 0.890 and 0.752, respectively differentiating fibrosis F0-F1 from F2-F4, and F0-F2 from F3-F4, and surpassing other serum panels. However, AUROC (0.747) in Model C used for the diagnosis of F4 from F0-F3 was lower than AUROC (0.795) in FIB-4. In combination with ALT and PLT, the multiparameter models showed better diagnostic power (AUROC = 0.912, 0.829, 0.885, respectively) when compared with other models. In the validation group, the AUROCs of the three combined models (0.929, 0.858, and 0.867, respectively) were still satisfactory. We also applied the combined models to distinguish adjacent fibrosis stages of 432 patients (F0-F1/F2/F3/F4), and the AUROCs were 0.917, 0.720 and 0.785. CONCLUSION: Multiparameter models based on serum N-glycans are effective supplementary markers to distinguish between adjacent fibrosis stages of patients caused by HBV, especially in combination with ALT and PLT.


Assuntos
Vírus da Hepatite B , Hepatite B Crônica/sangue , Cirrose Hepática/diagnóstico , Testes de Função Hepática/estatística & dados numéricos , Polissacarídeos/sangue , Adulto , Alanina Transaminase/sangue , Área Sob a Curva , Aspartato Aminotransferases/sangue , Biomarcadores/sangue , Feminino , Glicosilação , Hepatite B Crônica/complicações , Hepatite B Crônica/virologia , Humanos , Cirrose Hepática/virologia , Masculino , Pessoa de Meia-Idade , Contagem de Plaquetas , Polissacarídeos/química , Valor Preditivo dos Testes , Curva ROC , Estudos Retrospectivos
6.
Plant Physiol ; 175(4): 1661-1668, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29089393

RESUMO

The phytohormone abscisic acid (ABA) controls many developmental and physiological processes. Here, we report that PHOSPHATE1 (PHO1) participates in ABA-mediated seed germination and early seedling development. The transcription of PHO1 was obviously enhanced during seed germination and early seedling development and repressed by exogenous ABA. The pho1 mutants (pho1-2, pho1-4, and pho1-5) showed ABA-hypersensitive phenotypes, whereas the PHO1-overexpressing lines were ABA-insensitive during seed germination and early seedling development. The expression of PHO1 was repressed in the ABI5-overexpressing line and elevated in the abi5 mutant, and ABI5 can bind to the PHO1 promoter in vitro and in vivo, indicating that ABI5 directly down-regulated PHO1 expression. Disruption of PHO1 abolished the ABA-insensitive germination phenotypes of abi5 mutant, demonstrating that PHO1 was epistatic to ABI5 Together, these data demonstrate that PHO1 is involved in ABA-mediated seed germination and early seedling development and transcriptionally regulated by ABI5.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Germinação/fisiologia , Sementes/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Mutação , Plantas Geneticamente Modificadas , Nicotiana/genética , Nicotiana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...