Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38334589

RESUMO

Methanol steam reforming (MSR) is studied on a Pt3Sn surface using the density functional theory (DFT). An MSR network is mapped out, including several reaction pathways. The main pathway proposed is CH3OH + OH → CH3O → CH2O → CH2O + OH → CH2OOH → CHOOH → COOH → COOH + OH → CO2 + H2O. The adsorption strengths of CH3OH, CH2O, CHOOH, H2O and CO2 are relatively weak, while other intermediates are strongly adsorbed on Pt3Sn(111). H2O decomposition to OH is the rate-determining step on Pt3Sn(111). The promotion effect of the OH group is remarkable on the conversions of CH3OH, CH2O and trans-COOH. In particular, the activation barriers of the O-H bond cleavage (e.g., CH3OH → CH3O and trans-COOH → CO2) decrease substantially by ~1 eV because of the involvement of OH. Compared with the case of MSR on Pt(111), the generation of OH from H2O decomposition is more competitive on Pt3Sn(111), and the presence of abundant OH facilitates the combination of CO with OH to generate COOH, which accounts for the improved CO tolerance of the PtSn alloy over pure Pt.

2.
J Environ Sci (China) ; 48: 45-58, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27745671

RESUMO

A series of meso-microporous Cu-SAPO-34 catalysts were successfully synthesized by a one-pot hydrothermal crystallization method, and these catalysts exhibited excellent NH3-SCR performance at low temperature. Their structure and physic chemical properties were characterized by means of X-ray diffraction patterns (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), N2 sorption-desorption, nuclear magnetic resonance (NMR), Inductively Coupled Plasma-Atomic Emission spectrometer (ICP-AES), X-ray absorption spectroscopy (XPS), Temperature-programmed desorption of ammonia (NH3-TPD), Ultraviolet visible diffuse reflectance spectroscopy (UV-Vis DRS) and Temperature programmed reduction (TPR). The analysis results indicate that the high activities of Cu-SAPO-34 catalysts could be attributed to the enhancement of redox property, the formation of mesopores and the more acid sites. Furthermore, the kinetic results verify that the formation of mesopores remarkably reduces diffusion resistance and then improves the accessibility of reactants to catalytically active sites. The 1.0-Cu-SAPO-34 catalyst exhibited the high NO conversion (>90%) among the wide activity temperature window in the range of 150-425°C.


Assuntos
Amônia/química , Cobre/química , Modelos Químicos , Óxido Nítrico/química , Zeolitas/química , Catálise , Cinética , Oxirredução , Porosidade , Difração de Raios X
3.
Sci Rep ; 4: 7276, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25450726

RESUMO

Zeolite fibers have attracted growing interest for a range of new applications because of their structural particularity while maintaining the intrinsic performances of the building blocks of zeolites. The fabrication of uniform zeolite fibers with tunable hierarchical porosity and further exploration of their catalytic potential are of great importance. Here, we present a versatile and facile method for the fabrication of hierarchical ZSM-5 zeolite fibers with macro-meso-microporosity by coaxial electrospinning. Due to the synergistic integration of the suitable acidity and the hierarchical porosity, high yield of propylene and excellent anti-coking stability were demonstrated on the as-prepared ZSM-5 hollow fibers in the catalytic cracking reaction of iso-butane. This work may also provide good model catalysts with uniform wall thickness and tunable porosity for studying a series of important catalytic reactions.

4.
Proc Natl Acad Sci U S A ; 104(25): 10441-6, 2007 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-17563373

RESUMO

The role of external ionic strength in diatom biosilica formation was assessed by monitoring the nanostructural changes in the biosilica of the two marine diatom species Thalassiosira punctigera and Thalassiosira weissflogii that was obtained from cultures grown at two distinct salinities. Using physicochemical methods, we found that at lower salinity the specific surface area, the fractal dimensions, and the size of mesopores present in the biosilica decreased. Diatom biosilica appears to be denser at the lower salinity that was applied. This phenomenon can be explained by assuming aggregation of smaller coalescing silica particles inside the silica deposition vesicle, which would be in line with principles in silica chemistry. Apparently, external ionic strength has an important effect on diatom biosilica formation, making it tempting to propose that uptake of silicic acid and other external ions may take place simultaneously. Uptake and transport of reactants in the proximity of the expanding silica deposition vesicle, by (macro)pinocytosis, are more likely than intracellular stabilization and transport of silica precursors at the high concentrations that are necessary for the formation of the siliceous frustule components.


Assuntos
Diatomáceas/fisiologia , Nanoestruturas/química , Dióxido de Silício/metabolismo , Cloreto de Sódio/metabolismo , Fenômenos Químicos , Físico-Química , Diatomáceas/química , Diatomáceas/crescimento & desenvolvimento , Modelos Biológicos , Nanoestruturas/ultraestrutura , Concentração Osmolar , Dióxido de Silício/química
5.
Chemistry ; 12(5): 1448-56, 2006 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-16308879

RESUMO

Herein we report the synthesis and characterization of hollow silica spheres with a narrow size distribution, uniform wall thickness, and a worm-like pore structure. The formation of these spheres was monitored by confocal laser scanning microscopy and dynamic light scattering. A model for the molecular build-up of these silica hollow spheres is derived from these data in combination with studies of the as-made particles by transmission electron microscopy, scanning electron microscopy, pore size analysis, thermogravimetric analysis, and solid-state nuclear magnetic resonance. We further demonstrate that these spheres can be used for the encapsulation and subsequent release of different dye molecules.

6.
J Nanosci Nanotechnol ; 5(1): 68-78, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15762163

RESUMO

Silica becomes increasingly used in chemical, pharmaceutical, and (nano)technological processes, resulting in an increased demand for well-defined silicas and silica-based materials. The production of highly structured silica from cheap starting materials and under ambient conditions, which is a target for many researchers, is already realized in the formation of diatom biosilica, producing highly hierarchical ordered meso- and macropores silica structures. This notion formed the starting point in our integrative biomolecular and biomimetic study on diatom silicon biomineralization in which we have analyzed silica transformations and structure-direction in polymer-mediated silica syntheses using a combination of (ultra)small-angle X-ray scattering and (cryo)electron microscopy. Using bio-analogous reaction conditions and reagents, such as waterglass and (combinations of) polyethylene oxide (PEO) based polymers, we demonstrate in this review the synthesis of tailor-made mesoporous silicas in which we can, as in biosilica synthesis, control the morphological features of the resulting materials on the nanometer level as well as on the micrometer level.


Assuntos
Biomimética/métodos , Cristalização/métodos , Diatomáceas/metabolismo , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Dióxido de Silício/química , Silício/química , Biomimética/instrumentação , Diatomáceas/ultraestrutura , Minerais/química , Minerais/metabolismo , Tamanho da Partícula , Polímeros/química , Silício/metabolismo , Dióxido de Silício/metabolismo , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...