Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 311
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 273(Pt 1): 132993, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38862049

RESUMO

Low ionic conductivity and poor interface stability of poly(ethylene oxide) (PEO) restrict the practical application as polymeric electrolyte films to prepare solid-state lithium (Li) metal batteries. In this work, biomass-based carboxymethyl chitosan (CMCS) is designed and developed as organic fillers into PEO matrix to form composite electrolytes (PEO@CMCS). Carboxymethyl groups of CMCS fillers can promote the decomposition of Lithium bis(trifluoromethane sulfonimide) (LiTFSI) to generate more lithium fluoride (LiF) at CMCS/PEO interface, which not only forms ionic conductive network to promote the rapid transfer of Li+ but also effectively enhances the interface stability between polymeric electrolyte and Li metal. The enrichment of carboxyl, hydroxyl, and amidogen functional groups within CMCS fillers can form hydrogen bonds with ethylene oxide (EO) chains to improve the tensile properties of PEO-based electrolyte. In addition, the high hardness of CMCS additives can also strengthen mechanical properties of PEO-based electrolyte to resist penetration of Li dendrites. LiLi symmetric batteries can achieve stable cycle for 2500 h and lithium iron phosphate full batteries can maintain 135.5 mAh g-1 after 400 cycles. This work provides a strategy for the enhancement of ion conductivity and interface stability of PEO-based electrolyte, as well as realizes the resource utilization of biomass-based CMCS.


Assuntos
Quitosana , Condutividade Elétrica , Fontes de Energia Elétrica , Eletrólitos , Lítio , Polietilenoglicóis , Quitosana/química , Quitosana/análogos & derivados , Polietilenoglicóis/química , Lítio/química , Eletrólitos/química , Íons/química
2.
Int J Biol Macromol ; 269(Pt 2): 132145, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723819

RESUMO

Sulfonated lignin-based dye dispersants have intensively attracted attention due to their low cost, renewability and abundant sources. However, their utilization is limited by the low content of sulfonic groups and high content of hydroxyl groups in their complex lignin structure, which results in various problems such as high reducing rate of dye, severe staining of the fibers and uneven dyeing. Here, the multi-site sulfonated lignin-based dispersants were prepared with high sulfonic group content (2.20 mmol/g) and low hydroxyl content (2.43 mmol/g). When using it as the dispersant, the dye uptake rate was improved from 69.23 % to 98.55 %, the reducing rate was decreased from 20.82 % to 2.03 %, the K/S value was reduced from 0.69 to 0.02, and the particle sizes in dye system before and after high temperature treatment were stabilized below 0.5 µm. Besides, the dispersion effect was significantly improved because no obvious separation between dye and water was observed even if without the assistance of grinding process. In short, the multi-site sulfonation method proposed in this work could remarkably improve the performances of the lignin-based dye dispersants, which would facilitate the development of the dye dispersion and the high value utilization of lignin.


Assuntos
Corantes , Lignina , Lignina/química , Corantes/química , Ácidos Sulfônicos/química , Tamanho da Partícula , Temperatura
3.
J Colloid Interface Sci ; 662: 138-148, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38340513

RESUMO

The shuttle effect, sluggish conversion kinetics, and uncontrollable lithium dendrites seriously hinder the practical application of lithium-sulfur (Li-S) batteries. Among many modified materials, covalent organic frameworks (COFs) stand out for their excellent ability to inhibit the shuttle effect, while their role in promoting lithium nucleation and catalyzing the conversion of sulfur species has been largely ignored. In this study, an integrated COF separator (TpPa@2400) is developed as a rapid lithium nucleator and sulfur species catalyst in fast-charging Li-S batteries. According to the adsorption energy and Bader charge results, Li atoms preferentially adsorb onto the surface of the TpPa@2400 separator, and the larger Bader charge value (0.52 |e|) of the TpPa@2400 separator also signifies faster lithium transport, promoting the nucleation of Li ions. Furthermore, density functional theory (DFT) theoretically demonstrates that the TpPa@2400 separator exhibits lower free energy for sulfur species interconversion. As a result, the TpPa@2400 separator enables the Li-Li symmetric cell with an extended cycle life of 6000 h at a current density/capacity of 10 mA cm-2/10 mAh cm-2. The Li-S battery assembled using the TpPa@2400 separator delivers a high capacity of 1636.4 mAh/g at 0.1C and a rapid sulfur species conversion capacity of 513.8 mAh/g at 2C.

4.
Bioresour Technol ; 395: 130347, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242243

RESUMO

The heavy metals, pesticides and dyes in agriculture and industry caused serious water pollution have increased the urgency for the advancement of biomass-based adsorbents due to their merits of low cost, high efficiency, and environmental sustainability. Thus, this review systematically examines the recent progress of lignin-based adsorbents dedicated to wastewater purification. Commencing with a succinct exposition on the intricate structure and prevalent forms of lignin, the review proceeds to expound rational design strategies tailored for lignin-based adsorbents coupled with adsorption mechanisms and regeneration methods. Emphasis is placed on the potential industrial applications of lignin-based adsorbents, accentuating their capacity for recovery and direct utilization post-use. The future challenges and outlooks associated with lignin-based adsorbents are discussed to provide novel perspectives for the development of high-performance and sustainable biosorbents, facilitating the effective removal of pollutants and the value-added utilization of resources in a sustainable manner.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Purificação da Água , Lignina , Corantes , Purificação da Água/métodos , Adsorção
5.
Small ; 20(10): e2305502, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37880909

RESUMO

Biomass-based hydrogels have attracted great attention in flexible and sustainable self-powered power sources but struggled to fabricate in a green, high-efficiency, and low-cost manner. Herein, a novel and facile alkali-polyphenol synergetic self-catalysis system is originally employed for the fast gelation of self-healable and self-adhesive lignin-based conductive hydrogels, which can be regarded as hydrogel electrodes of flexible triboelectric nanogenerators (TENGs). This synergy self-catalytic system comprises aqueous alkali and polyphenol-containing lignin, in which alkali-activated ammonium persulfate (APS) significantly accelerates the generation of radicals and initiates the polymerization of monomers, while polyphenol acts as a stabilizer to avoid bursting polymerization from inherent radical scavenging ability. Furthermore, multiple hydrogen bonds between lignin biopolymers and polyacrylamide (PAM) chains impart lignin-based hydrogels with exceptional adhesiveness and self-healing properties. Intriguingly, the alkaline conditions not only contribute to the solubility of lignin but also impart superior ionic conductivity of lignin-based hydrogel that is applicable to flexible TENG in self-powered energy-saving stair light strips, which holds great promise for industrial applications of soft electronics.

6.
Molecules ; 28(19)2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37836748

RESUMO

The application of lithium metal batteries is limited by the drawbacks of safety problems and Li dendrite formation. Quasi-solid-state electrolytes (QSSEs) are the most promising alternatives to commercial liquid electrolytes due to their high safety and great compatibility with electrodes. However, Li dendrite formation and the slow Li+ diffusion in QSSEs severely hinder uniform Li deposition, thus leading to Li dendrite growth and short circuits. Herein, an eco-friendly and low-cost sodium lignosulfonate (LSS)-assisted PVDF-based QSSE is proposed to induce uniform Li deposition and inhibit Li dendrite growth. Li symmetric cells with 5%-LSS QSSE possess a high Li+ transfer number of 0.79, and they exhibit a long cycle life of 1000 h at a current density/areal capacity of 1 mA cm-2/5 mAh cm-2. Moreover, due to the fast electrochemical dynamics endowed by the improved compatibility of the electrodes and fast Li+ diffusion, the LFP/5%-LSS/Li full cells still maintain a high capacity of 110 mAh g-1 after 250 cycles at 6C. This work provides a novel and promising choice that uses eco-friendly LSS as an additive to PVDF-based QSSE in Li metal batteries.

7.
Int J Biol Macromol ; 253(Pt 1): 126688, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37666401

RESUMO

Adsorption method is an effective approach to treat wastewater containing methylene blue. Herein, a cost-effective and eco-friendly lignin-based network composite hydrogel adsorbent (PAA@SML) was constructed by using polyacrylic acid (PAA) to crosslink with sulfomethylated lignin (SML) via free radical polymerization for adsorption of methylene blue (MB) from wastewater. The constructed PAA@SML-0.2 exhibited remarkable adsorption performance towards removal of MB, with a maximum theoretical adsorption capacity of 777.1 mg·g-1. The improved efficiency can be attributed to the well-established network structure and abundant hydrophilic functional groups present in the adsorbent, promoting the interaction between methylene blue (MB) molecules and the adsorption sites of the adsorbent. The adsorption process of the adsorbent for MB followed the pseudo-second-order kinetic and the Langmuir isotherm models, which illustrated the adsorption process attributed to monolayer chemisorption. Mechanism investigation confirmed that the adsorption of MB by PAA@SML-0.2 primarily relied on hydrogen bonding and electrostatic interactions. Moreover, the recyclability test demonstrated excellent regeneration usability and stability of PAA@SML-0.2, and the adsorption capacity maintained above 74.0 % after five cycles. This constructed lignin-based network composite hydrogel is considered to have great potential in the treatment of organic dye in wastewater.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Lignina/química , Azul de Metileno/química , Adsorção , Hidrogéis , Poluentes Químicos da Água/química , Cinética
8.
iScience ; 26(8): 107416, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37564699

RESUMO

Simultaneous photocatalytic biorefinery and CO2 reduction to co-produce fuels and high value-added chemicals have recently attracted significant attention; however, comprehensive studies are still lacking. Herein, we report the preparation of highly crystalline oxygen-doped carbon nitride nanotubes (O-CNNTs-x) using an ammonium fluoride-assisted hydrothermal/calcination strategy. The hollow structure, high crystallinity, and O incorporation endowed the O-CNNTs-x with photocatalytic activity by considerably improving optical absorption and modulating the charge carrier motion. The lactic acid yield and CO evolution rate over O-CNNTs-2.0 reached 82.08% and 67.95 µmol g-1 h-1, which are 1.57- and 7.37-fold times higher than those of CN, respectively. Moreover, ·OH plays a key role in the oxidation half-reaction. This study offers a facile approach for fabricating highly crystalline element-doped CN with a customizable morphology and electronic properties and demonstrates the viability of co-photocatalytic CO2 reduction and biomass selective oxidation.

9.
Int J Biol Macromol ; 247: 125809, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37453645

RESUMO

The use of lignin carbon as an adsorbent for the adsorption of phosphates from wastewater is a promising technology. However, most lignin carbon-based adsorbents still suffer from low adsorption efficiency and poor selectivity. Herein, a novel FeLaO3-modified sulfomethylated lignin (SL) biochar adsorbent (FLO@CSL) was prepared for phosphate removal. The development of this adsorbent took into consideration the strong affinity of lanthanum (La) and iron (Fe) (hydro) oxides for phosphate and the excellent carrier properties of lignin-based biochar. As the core of FLO@CSL, FeLaO3 active sites are highly dispersed on the surface of SL biochar. Besides, doping of Fe(III) not only imparts magnetic properties to FLO@CSL, thereby effectively improving the separation efficiency of the adsorbent, but also enhances the phosphate adsorption performance. Performance studies revealed that FLO@CSL exhibits remarkable adsorption selectivity and substantial phosphate-adsorption capacity. Notably, the maximum adsorption capacity was found to be 137.14 mg P g-1. Phosphate adsorption on the FLO@CSL surfaces proceeds via chemisorption in a single layer, and ligand exchange plays an important role in determining the adsorption behaviour. Because of its exceptional selectivity, remarkable adsorption capacity and outstanding magnetic separation efficiency, FLO@CSL is a highly promising adsorbent material for effectively treating phosphates in wastewater.


Assuntos
Fosfatos , Poluentes Químicos da Água , Lantânio , Lignina , Ferro , Águas Residuárias , Cinética , Água , Carvão Vegetal , Adsorção , Poluentes Químicos da Água/análise , Fenômenos Magnéticos
10.
Int J Biol Macromol ; 245: 125597, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37385310

RESUMO

Galactomannan-based biogums were derived from fenugreek, guar, tara, and carob and consisted of mannose and galactose with different ratios, as well as the implementation of high-value utilization was very significant for sustainable development. In this work, renewable and low-cost galactomannan-based biogums were designed and developed as functional coatings protected on the Zn metal anodes. The molecule structure of galactomannan-based biogums were explored on the effect of anticorrosion ability and uniform deposition behavior through the introduction of fenugreek gum, guar gum, tara gum, and carob gum with different ratios of mannose to galactose as 1.2:1, 2:1, 3:1, and 4:1. The existence of biogum protective layers can reduce the contact area between Zn anodes and aqueous electrolyte to enhance the anticorrosion ability of Zn anodes. Rich oxygen-containing groups in galactomannan-based biogums can coordinate with Zn2+ and Zn atoms to form ion conductivity gel layer and adsorb closely on the surface of Zn metal, which can induce uniform deposition of Zn2+ to avoid dendrite growth. Zn electrodes protected by biogums can cycle impressively for 1980 h with 2 mA cm-2 and 2 mAh cm-2. This work can provide a novel strategy to enhance Zn metal anodes' electrochemical performance, as well as implement the high-value application of biomass-based biogums as functional coatings.


Assuntos
Fabaceae , Zinco , Galactose , Manose , Metais , Eletrodos
11.
Int J Mol Sci ; 24(12)2023 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-37373449

RESUMO

The structure of cellulolytic enzyme lignin (CEL) prepared from three bamboo species (Neosinocalamus affinis, Bambusa lapidea, and Dendrocalamus brandisii) has been characterized by different analytical methods. The chemical composition analysis revealed a higher lignin content, up to 32.6% of B. lapidea as compared to that of N. affinis (20.7%) and D. brandisii (23.8%). The results indicated that bamboo lignin was a p-hydroxyphenyl-guaiacyl-syringyl (H-G-S) lignin associated with p-coumarates and ferulates. Advanced NMR analyses displayed that the isolated CELs were extensively acylated at the γ-carbon of the lignin side chain (with either acetate and/or p-coumarate groups). Moreover, a predominance of S over G lignin moieties was found in CELs of N. affinis and B. lapidea, with the lowest S/G ratio observed in D. brandisii lignin. Catalytic hydrogenolysis of lignin demonstrated that 4-propyl-substituted syringol/guaiacol and propanol guaiacol/syringol derived from ß-O-4' moieties, and methyl coumarate/ferulate derived from hydroxycinnamic units were identified as the six major monomeric products. We anticipate that the insights of this work could shed light on the sufficient understanding of lignin, which could open a new avenue to facilitate the efficient utilization of bamboo.


Assuntos
Bambusa , Lignina , Lignina/química , Pirogalol , Bambusa/química , Catálise
12.
ACS Appl Mater Interfaces ; 15(16): 20040-20052, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37043697

RESUMO

The commercial application of high-safety aqueous zinc (Zn) secondary batteries is hindered by the poor cycling life of Zn metal anodes. Here we propose a dendrite growth and hydrogen evolution corrosion reaction mechanism from the binding energy of the deposited crystal plane on the Zn surface and the adsorption energy of H2O molecules on different crystal planes as well as the binding energy of H2O molecules with Zn2+ ions. The biomass-based alkyl polyglucoside (APG) surfactant is adopted as an electrolyte additive of 0.15% to regulate the preferential growth of a parallel Zn(002) plane and enhance the anticorrosion ability of Zn metal anodes. The robust binding and adsorption energies of APG with Zn2+ ions in the aqueous electrolyte and the Zn(002) plane on Zn surface generate a synergistic effect to increase the concentration of Zn2+ ions on the APG-adsorbed Zn(002) plane, endowing the continuous growth of the preferential parallel Zn(002) plane and the excellent anticorrosion capacity. Accordingly, the long-term cycle stability of 4000 h can be achieved for Zn anodes with APG additives, which is better than that with pure ZnSO4 electrolyte. With the addition of APG in the anolyte electrolyte, Zn-I2 full cells display excellent cycling performance (70 mAh g-1 after 20000 cycles) as compared with that without APG additives.

13.
J Hazard Mater ; 448: 130988, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36860059

RESUMO

Developing the lignin-based functional materials for uranium uptake is extremely attractive, but challenging due to the complex structure, poor solubility and reactivity of lignin. Herein, a novel phosphorylated lignin (LP)/sodium alginate/ carboxylated carbon nanotube (CCNT) composite aerogel (LP@AC) with vertically oriented lamellar configuration was created for efficient uranium uptake from acidic wastewater. The successful phosphorylation of lignin by a facile solvent-free mechanochemical method achieved more than six-times enhancement in U(VI) uptake capacity of lignin. While, the incorporation of CCNT not only increased the specific surface area of LP@AC, but also improved its mechanical strength as a reinforcing phase. More importantly, the synergies between LP and CCNT components endowed LP@AC with an excellent photothermal performance, resulting in a local heat environment on LP@AC and further boosting the U(VI) uptake. Consequently, the light irradiated LP@AC exhibited an ultrahigh U(VI) uptake capacity (1308.87 mg g-1), 61.26% higher than that under dark condition, excellent adsorptive selectivity and reusability. After exposure to 10 L of simulated wastewater, above 98.21% of U(VI) ions could be rapidly captured by LP@AC under light irradiation, revealing the tremendous feasibility in industrial application. The electrostatic attraction and coordination interaction were considered as the main mechanism for U(VI) uptake.

14.
iScience ; 26(3): 106187, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36879809

RESUMO

Epoxy resin is widely used in various fields of the national economy due to its excellent chemical and mechanical properties. Lignin is mainly derived from lignocelluloses as one of the most abundant renewable bioresources. Due to the diversity of lignin sources and the complexity as well as heterogeneity of its structure, the value of lignin has not been fully realized. Herein, we report the utilization of industrial alkali lignin for the preparation of low-carbon and environmentally friendly bio-based epoxy thermosetting materials. Specifically, epoxidized lignin with substituted petroleum-based chemical bisphenol A diglycidyl ether (BADGE) in various proportions was cross-linked to fabricate thermosetting epoxies. The cured thermosetting resin revealed enhanced tensile strength (4.6 MPa) and elongation (315.5%) in comparison with the common BADGE polymers. Overall, this work provides a practicable approach for lignin valorization toward tailored sustainable bioplastics in the context of a circular bioeconomy.

15.
Int J Biol Macromol ; 234: 123668, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36796567

RESUMO

Multifunctional lignin-based adsorbents, which have shown great application prospect, have attracted widespread attention. Herein, a series of multifunctional lignin-based magnetic recyclable adsorbents were prepared from carboxymethylated lignin (CL), which was rich in carboxyl group (-COOH). After optimizing the mass ratio of CL to Fe3O4, the prepared CL/Fe3O4 (3:1) adsorbent showed efficient adsorption capacities for heavy metal ions. The kinetic and isotherm nonlinear fitting studies revealed that the adsorption process followed the second-order kinetic and Langmuir models, and the maximum adsorption capacities (Qmax) of CL/Fe3O4 (3:1) magnetic recyclable adsorbent for Pb2+, Cu2+ and Ni2+ ions reached 189.85, 124.43 and 106.97 mg/g, respectively. Meanwhile, after 6 cycles, the adsorption capacities of CL/Fe3O4 (3:1) for Pb2+, Cu2+ and Ni2+ ions could keep at 87.4 %, 83.4 % and 82.3 %, respectively. In addition, CL/Fe3O4 (3:1) also exhibited excellent electromagnetic wave absorption (EMWA) performance with a reflection loss (RL) of -28.65 dB at 6.96 GHz under the thickness of 4.5 mm, and its effective absorption bandwidth (EAB) achieved 2.24 GHz (6.08-8.32 GHz). In short, the prepared multifunctional CL/Fe3O4 (3:1) magnetic recyclable adsorbent with outstanding adsorption capacity for heavy metal ions and superior EMWA capability opens a new avenue for the diversified utilization of lignin and lignin-based adsorbent.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Lignina , Chumbo , Íons , Radiação Eletromagnética , Adsorção , Poluentes Químicos da Água/análise , Cinética
16.
Bioresour Technol ; 373: 128752, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36804856

RESUMO

The fermented corn stover residues are abundant renewable lignin-rich bioresources that show great potential to produce aromatic phenols. However, selective catalytic hydrogenolysis of this residual material still remains challenge to obtain high yields. Herein, a novel strategy to produce monophenolic compounds from the fermented stover over a commercial Pd/C catalyst was proposed. Taking the reaction temperature as the key variable, the highest monomer yield was 28.5 wt% at 220 °C in compaction with that of the pristine corn stover (22.8 wt%). The enhanced monophenol yield was due to the higher contents of lignin and less recalcitrance in the fermented stover. Moreover, the van Krevelen diagram revealed a slight selective CO bond scission of lignin macromolecular during fermentation as well as the dehydration and deoxygenation in hydrogenolysis reaction. Overall, this work opens a new avenue for the valorization of lignin through reductive catalytic fractionation of agricultural wastes.


Assuntos
Lignina , Zea mays , Lignina/química , Zea mays/química , Catálise , Fracionamento Químico , Fenóis
17.
Carbohydr Polym ; 300: 120244, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36372506

RESUMO

A novel multi-layered reticular polyamidoxime (PAO)-functionalized holocellulose bundles (ML-r-PAO@HB) with abundant oriented micro-channels and high mechanical strength was created via a facile solvent-exchange strategy and used for the first time to capture uranium from seawater. Due to the hydrophobic interaction of PAO chains induced by the solvent-exchange, multi-layered reticular PAO was successfully self-assembled onto the oriented micro-channels of the HB, which greatly improved the accessibility to the adsorption sites by increasing the exposed surface of PAO. The ML-r-PAO@HB exhibited high uptake capacity (851.42 mg g-1 PAO) and excellent adsorptive selectivity for U(VI) ions. After exposure to 500-L natural seawater for 28 days, an ultra-high uranium extraction capacity (9.74 mg g-1 PAO) was achieved by ML-r-PAO@HB. The N and O atoms in the -C(NH2)N-OH group were the main coordination sites for U(VI) uptake. These wonderful performances render the ML-r-PAO@HB highly desirable for the large-scale uranium extraction from seawater.


Assuntos
Urânio , Urânio/química , Água do Mar/química , Adsorção , Solventes
18.
Int J Biol Macromol ; 222(Pt B): 2571-2580, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36228814

RESUMO

Activation of lignin by demethylation for improving the reactivity has attracted extensive attentions. However, it still faces many challenges, such as the unsatisfied increase of hydroxyl content and the undesired cracking of linear linkages. Here, the efficient demethylations for significantly increasing the hydroxyl content and protecting the structure of industrial lignin were explored using lewis acid as modification reagent. As BBr3 was used, the phenolic hydroxyl content (Ar-OH) was increased by 80.65 %, but the lignin structure might be destroyed. About 75 % of the ß-O-4 linkages could be fortunately retained by using AlCl3. This method could also be used for the demethylation of alkaline poplar lignin with up to 171.67 % increase of Ar-OH (from 1.80 to 4.89 mmol/g). After activation, the antioxidant properties were improved 4.64-fold and 2.58-fold for 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals, respectively. This work would provide a theory guidance for activation of lignin and facilitate its high-value application.


Assuntos
Ácidos de Lewis , Lignina , Lignina/química , Indicadores e Reagentes , Antioxidantes/química , Radical Hidroxila , Desmetilação
19.
Int J Biol Macromol ; 218: 285-294, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35870625

RESUMO

Excessive discharge of inorganic and organic contaminants in water poses a serious threat to the ecosystems. However, most synthetic adsorbents lack cost-effectiveness in terms of preparation. Interestingly, loofah sponge (LS) was a natural absorbent that could effectively remove pollutions in wastewater, but its adsorption capacity is barely satisfactory. Herein, we present a novel strategy of TEMPO-oxidized loofah sponge (TOLS) to boost the adsorption performance of LS. The batch experiments demonstrated that the maximum removal capacity of TOLS for Pb(II) and methylene blue (MB) was 96.6 mg/g and 10.0 mg/g, respectively, which were 3.5 and 1.3 times that of pristine LS. Notably, the continuous-flow reaction testing of the mixed solution revealed that the elimination rate of Pb(II) and MB was still better than 90 % even after 16 h. Such excellent performance was benefit from the enhanced specific surface area and surface carboxyl content of TOLS. This work offers new insights into the rational development of multifunctional and inexpensive cellulose-based bio-adsorbents for wastewater remediation.


Assuntos
Luffa , Poluentes Químicos da Água , Adsorção , Celulose , Óxidos N-Cíclicos , Ecossistema , Cinética , Chumbo , Azul de Metileno , Águas Residuárias
20.
Sci Total Environ ; 827: 154343, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35257753

RESUMO

The development of functional biomass-based carbon aerogels (CAs) with excellent mechanical flexibility and ultra-high phosphate capture capacity is crucial for capture and recovery of phosphate from waste water. Herein, a functional biomass-derived CA (MgO@SL/CMC CA) with an ordered wave-shaped layered structure and excellent compressibility was fabricated with the aim of creating a material with efficient phosphate capture performance. The incorporation of sulfonomethylated lignin (SL) significantly improves the mechanical flexibility of MgO@SL/CMC CA. Numerous MgO nano-particles (NPs), which act as principal adsorption sites, were uniformly anchored on the MgO@SL/CMC CA. The prepared MgO@SL/CMC CA with high Mg content (20.34 wt%) exhibited an ultra-high phosphate capture capacity (218.51 mg P g-1 for adsorbent or 644.58 mg P g-1 for MgO), excellent adsorptive selectivity for phosphate and a wide pH range of application (2-8). Notably, more than 81.95% of the phosphate capture capacity was retained after six cyclic adsorption-desorption tests. A considerable effective treatment volume (468 BV) of actual wastewater (1.7 mg P L-1) could be achieved by the MgO@SL/CMC CA in the fixed-bed adsorption column. Research into the adsorption mechanism reveals that monolayer chemisorption of phosphate occurs on the MgO@SL/CMC CA through a ligand exchange process. The combination of favorable flexibility, green raw materials and superior phosphate capture performance endows MgO@SL/CMC CA with great application potential in the practical treatment of wastewater.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Adsorção , Biomassa , Carbono , Carvão Vegetal , Cinética , Lignina , Óxido de Magnésio , Fosfatos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...