Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39001121

RESUMO

This paper proposes a solution to the problem of mobile robot navigation and trajectory interpolation in dynamic environments with large scenes. The solution combines a semantic laser SLAM system that utilizes deep learning and a trajectory interpolation algorithm. The paper first introduces some open-source laser SLAM algorithms and then elaborates in detail on the general framework of the SLAM system used in this paper. Second, the concept of voxels is introduced into the occupation probability map to enhance the ability of local voxel maps to represent dynamic objects. Then, in this paper, we propose a PointNet++ point cloud semantic segmentation network combined with deep learning algorithms to extract deep features of dynamic point clouds in large scenes and output semantic information of points on static objects. A descriptor of the global environment is generated based on its semantic information. Closed-loop completion of global map optimization is performed to reduce cumulative error. Finally, T-trajectory interpolation is utilized to ensure the motion performance of the robot and improve the smooth stability of the robot trajectory. The experimental results indicate that the combination of the semantic laser SLAM system with deep learning and the trajectory interpolation algorithm proposed in this paper yields better graph-building and loop-closure effects in large scenes at SIASUN large scene campus. The use of T-trajectory interpolation ensures vibration-free and stable transitions between target points.

2.
Sensors (Basel) ; 23(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37896595

RESUMO

This paper studies the AWC (Active Wafer Centering) algorithm for the movement control and wafer calibration of the handling robot in semiconductor manufacturing to prevent wafer surface contact and contamination during the transfer process. The mechanical and software architecture of the wafer-handling robot is analyzed first, which is followed by a description of the experimental platform for semiconductor manufacturing methods. Secondly, the article utilizes the geometric method to analyze the kinematics of the semiconductor robot, and it decouples the motion control of the robot body from the polar coordinates and joint space. The wafer center position is calibrated using the generalized least-square inverse method for AWC correction. The AWC algorithm is divided into calibration, deviation correction, and retraction detection. These are determined by analyzing the robot's wafer calibration process. In conclusion, the semiconductor robot's motion control and AWC algorithm are verified through experiments for correctness, feasibility, and effectiveness. After the wafer correction, the precision of AWC is <± 0.15 mm, which meets the requirements for transferring robot wafers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA