Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 11(12)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36558818

RESUMO

Coronavirus disease 2019 (COVID-19) is a severe systemic infection that is a major threat to healthcare systems worldwide. According to studies, chronic obstructive pulmonary disease (COPD) patients with COVID-19 usually have a high risk of developing severe symptoms and fatality, but limited research has addressed the poor condition of COPD patients during the pandemic. This review focuses on the underlying risk factors including innate immune dysfunction, angiotensin converting enzyme 2 (ACE2) expression, smoking status, precocious differentiation of T lymphocytes and immunosenescence in COPD patients which might account for their poor outcomes during the COVID-19 crisis. Furthermore, we highlight the role of aging of the immune system, which may be the culprit of COVID-19. In brief, we list the challenges of COPD patients in this national pandemic, aiming to provide immune-related considerations to support critical processes in COPD patients during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and inspire immune therapy for these patients.

2.
Int J Chron Obstruct Pulmon Dis ; 17: 2603-2621, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36274992

RESUMO

Many studies have proved that the pathogenesis of the chronic obstructive pulmonary disease (COPD) and lung cancer is related, and may cause and affect each other to a certain extent. In fact, the change of chronic airway obstruction will continue to have an impact on the screening, treatment, and prognosis of lung cancer.In this comprehensive review, we outlined the links and heterogeneity between COPD and lung cancer and finds that factors such as gene expression and genetic susceptibility, epigenetics, smoking, epithelial mesenchymal transformation (EMT), chronic inflammation, and oxidative stress injury may all play a role in the process. Although the relationship between these two diseases have been largely determined, the methods to prevent lung cancer in COPD patients are still limited. Early diagnosis is still the key to a better prognosis. Thus, it is necessary to establish more intuitive screening evaluation criteria and find suitable biomarkers for lung cancer screening in high-risk populations with COPD. Some studies have indicated that COPD may change the efficacy of anti-tumor therapy by affecting the response of lung cancer patients to immune checkpoint inhibitors (ICIs). And for lung cancer patients with COPD, the standardized management of COPD can improve the prognosis. The treatment of lung cancer patients with COPD is an individualized, comprehensive, and precise process. The development of new targets and new strategies of molecular targeted therapy may be the breakthrough for disease treatment in the future.


Assuntos
Neoplasias Pulmonares , Doença Pulmonar Obstrutiva Crônica , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/etiologia , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Inibidores de Checkpoint Imunológico , Detecção Precoce de Câncer , Prognóstico
3.
Int J Chron Obstruct Pulmon Dis ; 17: 1847-1861, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991707

RESUMO

Background: The role of inducible costimulator (ICOS) signaling in chronic obstructive pulmonary disease (COPD) has not been fully elucidated. Methods: We compared the percentages of ICOS+ T cells and ICOS+ regulatory T (Treg) cells in CD4+ T cells and CD4+CD25+FOXP3+ Tregs, respectively, in the peripheral blood of smokers with or without COPD to those in healthy controls. We further characterized their phenotypes using flow cytometry. To investigate the influence of ICOS signaling on C-X-C motif chemokine receptor 3 (CXCR3) expression in COPD, we evaluated the expression levels of ICOS and CXCR3 in vivo and in vitro. Results: ICOS expression was elevated on peripheral CD4+ T cells and CD4+ Tregs of COPD patients, which positively correlated with the severity of lung function impairment in patients with stable COPD (SCOPD), but not in patients with acute exacerbation of COPD (AECOPD). ICOS+CD4+ Tregs in patients with SCOPD expressed higher levels of coinhibitors, programmed cell death protein 1 (PD-1) and T-cell immunoreceptor with Ig and ITIM domains (TIGIT), than ICOS-CD4+ Tregs, whereas ICOS+CD4+ T cells mostly exhibited a central memory (CD45RA-CCR7+) or effector memory (CD45RA-CCR7-) phenotype, ensuring their superior potential to respond potently and quickly to pathogen invasion. Furthermore, increased percentages of CXCR3+CD4+ T cells and CXCR3+CD4+ Tregs were observed in the peripheral blood of patients with SCOPD, and the expression level of CXCR3 was higher in ICOS+CD4+ T cells than in ICOS-CD4+ T cells. The percentage of CXCR3+CD4+ T cells was even higher in the bronchoalveolar lavage fluid than in matched peripheral blood in SCOPD group. Lastly, in vitro experiments showed that ICOS induced CXCR3 expression on CD4+ T cells. Conclusions: ICOS signaling is upregulated in COPD, which induces CXCR3 expression. This may contribute to increased numbers of CXCR3+ Th1 cells in the lungs of patients with COPD, causing inflammation and tissue damage.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Quimiocinas/metabolismo , Humanos , Antígenos Comuns de Leucócito/metabolismo , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Receptores CCR7/metabolismo , Linfócitos T Reguladores/metabolismo , Células Th1
4.
Ann Transl Med ; 7(14): 327, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31475197

RESUMO

BACKGROUND: Diffuse pulmonary ossification (DPO) is a rare disease characterized by bone tissue formation in the lung. DPO can be classified into idiopathic pulmonary ossification (IPO) and secondary pulmonary ossification. Cases with no identified etiology are classified as IPO. Variants of dishevelled associated activator of morphogenesis 2 (DAAM2) have been reported to be involved in the bone-resorption of osteoclasts. METHODS: Whole exome sequencing (WES) was used on samples from a patient with IPO and his healthy parents. The effects of all variants were determined using functional predictors (PolyPhen-2, SIFT, FATHMM and MutationTaster); variants existing only in the patient were further screened compared with his healthy parents. RESULTS: Forty deleterious variants, including 25 single nucleotide variants (SNVs) and 15 insertions and deletions (indels), were identified by WES. Finally, DAAM2 (c.G2960T:p.R987L) was screened by pathway analysis. CONCLUSIONS: We identified a novel variant of DAAM2 (c.G2960T:p.R987L) that might participate in the disease process of IPO.

5.
Int J Chron Obstruct Pulmon Dis ; 14: 1669-1680, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31440043

RESUMO

Background: The temporally dynamic changes of CD25 and Foxp3 expression in CD4+ T cells are initiated by T cell receptor (TCR) signals strength or frequency. There is a deficiency of peripheral markers for assessing COPD activity, and the current study was conducted to explore whether peripheral CD4+ T cell populations based on CD25 and Foxp3 expression could serve as an indicator for COPD inflammatory activity. Methods: The distribution and phenotypic characteristics of CD4+CD25±Foxp3± T cells from peripheral blood in different populations were determined by flow cytometry. The model for the differentiation of CD4+ T cells populations by CD25 and Foxp3 expression was explored in vitro. Results: The frequencies of peripheral CD4+CD25+Foxp3- T cells and CD4+CD25+Foxp3+ T cells were increased in AECOPD patients, whereas the frequency of CD4+CD25-Foxp3+ T cells was increased in SCOPD patients without receiving systemic treatment. Phenotypic analysis revealed that CD4+CD25+Foxp3- T cells, CD4+CD25+Foxp3+ T cells and CD4+CD25-Foxp3+ T cells had received antigenic stimulation and resembled central memory or effector memory T cells. The differentiation of CD4+ T cells populations by CD25 and Foxp3 expression was dictated by TCR signals. The paired study indicated that the frequencies of CD4+CD25+Foxp3- T cells, CD4+CD25+Foxp3+ T cells and CD4+CD25- Foxp3+ T cells were decreased while the frequency of CD4+CD25-Foxp3- T cells were increased in the same patients from AECOPD to convalescence. Conclusions: Collectively, we propose that the dynamic changes of CD4+ T cell populations by CD25 and Foxp3 expression could function as potential biomarkers for reflecting inflammatory activity in COPD.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Fatores de Transcrição Forkhead/imunologia , Subunidade alfa de Receptor de Interleucina-2/imunologia , Doença Pulmonar Obstrutiva Crônica , Biomarcadores/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Doença Pulmonar Obstrutiva Crônica/sangue , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/imunologia , Subpopulações de Linfócitos T/imunologia
6.
Front Immunol ; 10: 220, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30842769

RESUMO

The imbalance of CD4+Foxp3+ T cell subsets is reportedly involved in abnormal inflammatory immune responses in patients with chronic obstructive pulmonary disease (COPD). However, the possible role of CD4+CD25-Foxp3+ T cells in immune regulation in COPD remains to be investigated. In the current study, distribution and phenotypic characteristics of CD4+CD25-Foxp3+ T cells from peripheral blood were determined by flow cytometry; the origin, immune function and ultimate fate of CD4+CD25-Foxp3+ T cells were further explored in vitro. It was observed that circulating CD4+CD25-Foxp3+ T cells were significantly increased in stable COPD patients (SCOPD) and resembled central memory or effector memory T cells. Compared with peripheral CD4+CD25+Foxp3+ T cells, peripheral CD4+CD25-Foxp3+ T cells showed a lower expression of Foxp3, CTLA-4, HELIOS, and TIGIT, but a higher expression of CD127 and KI-67, suggesting that CD4+CD25-Foxp3+ T cells lost the expression of Tregs-associated molecules following the reduction in CD25. Unexpectedly, our study found that transforming growth factor-ß1 (TGFß1) decreased CD25 expression and played a critical role in the generation of CD4+CD25-Foxp3+ T cells from CD4+CD25+Foxp3+ T cells. Phenotypic analysis further revealed that both inducible and peripheral CD4+CD25-Foxp3+ T cells exhibited the features of activated conventional T cells. Importantly, memory CD4+CD25-Foxp3+ T cells facilitated the proliferation and differentiation of naïve CD4+ T cells into Th17 cells in the presence of IL-1ß, IL-6, IL-23, and TGFß1. Finally, a fraction of CD4+CD25-Foxp3+ T cells, exhibiting instability and plasticity, were converted to Th17 cells when subjected to Th17 cell-polarizing condition. Taken together, we propose that TGFß1 is responsible for the generation of CD4+CD25-Foxp3+ T cells, and these cells functionally exert an auxiliary effect on Th17 cells generation and might perpetuate chronic inflammation in COPD.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Fator de Crescimento Transformador beta1/metabolismo , Células Cultivadas , Feminino , Fatores de Transcrição Forkhead/metabolismo , Humanos , Memória Imunológica , Imunomodulação , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade
7.
Respir Res ; 20(1): 26, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30728014

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is characterized by continuous flow limitation and the immune system including macrophages and regulatory T lymphocytes (Tregs) is involved in COPD pathogenesis. In our previous study, we investigated that TGF-ß/BAMBI pathway was associated with COPD by regulating the balance of Th17/Treg. However, the role of bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI), a pseudoreceptor of TGF-ß signalling pathway, in regulating the immune system of COPD patients has not been fully studied. Hence, we speculate that the pseudoreceptor BAMBI may play roles in the regulation of M2 macrophages to induce the differentiation of CD4+ naïve T cells into Tregs and influence the immune response in COPD. METHODS: Peripheral blood mononuclear cells (PBMCs) were isolated from healthy nonsmokers (n = 12), healthy smokers (n = 10) and COPD patients (n = 20). Naïve CD4+ T cells and monocytes-induced macrophages were used for coculture assays. The phenotypic characteristics of macrophages and Tregs were determined by flow cytometry. The expression levels of BAMBI and the TGF-ß/Smad pathway members in M2 macrophages were measured by a Western blot analysis. The monocyte-derived macrophages were stimulated with cigarette smoke extract (CSE, concentration of 0.02%) to simulate the smoking process in humans. pCMV-BAMBI was transfected into monocyte-derived M2 macrophages for subsequent co-culture assays and signalling pathway analysis. RESULTS: Our results showed that M2 macrophages could induce the differentiation of Tregs through the TGF-ß/Smad signalling pathway. In addition, monocyte-derived macrophages from COPD patients highly expressed BAMBI, and had a low capacity to induce Tregs differentiation. The expression of BAMBI and the forced expiratory volume in 1 second (FEV1%) were negatively correlated in COPD. Furthermore, overexpression of BAMBI promoted the conversion of M2 macrophages to M1 macrophages via the TGF-ß/Smad pathway. CONCLUSIONS: We demonstrated that BAMBI could promote the polarization process of M2 macrophages to M1 macrophages via the TGF-ß/Smad signalling pathway and that overexpression of BAMBI could decrease the ability of M2 macrophages to induce Treg differentiation. These findings may provide a potential mechanism by which blocking BAMBI could improve immune function to regulate COPD inflammatory conditions.


Assuntos
Macrófagos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Transdução de Sinais/genética , Linfócitos T Reguladores/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular/genética , Técnicas de Cocultura , Feminino , Volume Expiratório Forçado , Humanos , Masculino , Pessoa de Meia-Idade , Monócitos/metabolismo , Fumaça/efeitos adversos , Fumar/metabolismo , Nicotiana
8.
Int J Mol Med ; 42(6): 3404-3414, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30320351

RESUMO

In CD4+ T helper (Th) cells, transforming growth factor ß (TGF­ß) is indispensable for the induction of both regulatory T (Treg) and interleukin­17­producing effector T helper (Th17) cells. Although BMP and activin membrane­bound inhibitor (BAMBI) is part of a rheostat­like mechanism for the regulation of TGF­ß signalling and autoimmune arthritis in mouse models, the underlying activity of BAMBI on the human Th17/Treg cell axis, particularly during exposure to cigarette smoke, remains to be elucidated. The present study aimed to further characterize BAMBI expression in human CD4+ cells, as well as immune imbalance during activation and cigarette smoke exposure. Results from the present study indicated that exposure to cigarette smoke extract partially suppressed Treg differentiation and promoted Th17 cell generation under stimulation by anti­CD3/28 antibodies and TGF­ß1. Additionally, exposure to cigarette smoke induced an inhibition of phosphorylated­Smad2/Smad3, which may have arisen from a concomitant enhancement of BAMBI expression. In conclusion, human BAMBI may function as a molecular switch to control TGF­ß signalling strength and the Th17/Treg cell balance, which may be used not only as a biomarker but also as a target of new treatment strategies for maintaining immune tolerance and for the treatment of smoking­induced immune disorders.


Assuntos
Proteínas de Membrana/metabolismo , Fumar/imunologia , Linfócitos T Reguladores/metabolismo , Células Th17/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Adulto , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transdução de Sinais , Proteína Smad3/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos , Células Th17/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo
9.
PeerJ ; 4: e2301, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27547589

RESUMO

Background. CD8(+) T lymphocytes are known to play a critical role in the pathogenesis of chronic obstructive pulmonary disease (COPD). However, systematic analyses of CD8(+) T cell (Cytotoxic T cells, Tc) subsets in COPD patients have yet to be well conducted. Methods. The whole Tc subsets, including Tc1/2/10/17, CD8(+) regulatory T cells (Tregs) and CD8(+) α7(+) T cells, were quantified by flow cytometry in peripheral blood from 24 stable COPD subjects (SCOPD), 14 patients during acute exacerbations (AECOPD), and 14 healthy nonsmokers (HN). Results. Acute exacerbations of COPD were accompanied by elevated levels of circulating CD8(+) T cells. Tc1 cells were increased in both SCOPD and AECOPD patients, whereas the percentage of Tc2 cells was decreased in SCOPD patients but remained normal in AECOPD patients. Tc17 cells were increased only in AECOPD patients, and the percentage of Tc10 cells was reduced in both SCOPD and AECOPD patients. The imbalances of pro/anti-inflammatory Tc subsets observed in COPD may be caused by the lack of Tc10 cells and the impaired anti-inflammatory capacity of CD8(+) Tregs. Conclusions. The imbalances between subsets of CD8(+) peripheral blood T cells contribute to the immune response dysfunction in COPD pathogenesis.

10.
Sci Rep ; 6: 31911, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27549738

RESUMO

BMP and activin membrane-bound inhibitor (BAMBI) is postulated to inhibit or modulate transforming growth factor ß (TGF-ß) signaling. Furthermore, strong upregulation of BAMBI expression following in vitro infection of chronic obstructive pulmonary disease (COPD) lung tissue has been demonstrated. In this study, we investigated whether TGF-ß/BAMBI pathway is associated with COPD. Blood samples were obtained from 27 healthy controls (HC), 24 healthy smokers (HS) and 29 COPD patients. Elevated Th17/Treg ratios, and increased levels of BAMBI protein and mRNA (in plasma and CD4(+) T cells respectively), were observed in COPD compared with HC and HS. BAMBI expression was first observed on human CD4(+) T cells, with a typical membrane-bound pattern. The enhanced plasma BAMBI levels in COPD positively correlated with the increased plasma TGF-ß1 levels and Th17/Treg ratio. Together, an impaired TGF-ß/BAMBI pathway may promote the inflammation leading to Th17/Treg imbalance, which is a new mechanism in smokers who develop COPD.


Assuntos
Doença Pulmonar Obstrutiva Crônica/imunologia , Transdução de Sinais , Linfócitos T Reguladores/metabolismo , Células Th17/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Feminino , Humanos , Masculino , Proteínas de Membrana/sangue , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/sangue , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fumar/sangue , Fumar/imunologia , Fator de Crescimento Transformador beta/sangue , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...