Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 10328, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365272

RESUMO

Crystal chemical design principles were applied to synthesise novel U4+ dominant and titanium excess betafite phases Ca1.15(5)U0.56(4)Zr0.17(2)Ti2.19(2)O7 and Ca1.10(4)U0.68(4)Zr0.15(3)Ti2.12(2)O7, in high yield (85-95 wt%), and ceramic density reaching 99% of theoretical. Substitution of Ti on the A-site of the pyrochlore structure, in excess of full B-site occupancy, enabled the radius ratio (rA/rB = 1.69) to be tuned into the pyrochlore stability field, approximately 1.48 ≲ rA/rB ≲ 1.78, in contrast to the archetype composition CaUTi2O7 (rA/rB = 1.75). U L3-edge XANES and U 4f7/2 and U 4f5/2 XPS data evidenced U4+ as the dominant speciation, consistent with the determined chemical compositions. The new betafite phases, and further analysis reported herein, point to a wider family of actinide betafite pyrochlores that could be stabilised by application of the underlying crystal chemical principle applied here.

2.
Sci Rep ; 13(1): 9329, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291129

RESUMO

Indium (In) is a neutron absorbing additive that could feasibly be used to mitigate criticality in ceramic wasteforms containing Pu in the immobilised form, for which zirconolite (nominally CaZrTi2O7) is a candidate host phase. Herein, the solid solutions Ca1-xZr1-xIn2xTi2O7 (0.10 ≤ x ≤ 1.00; air synthesis) and Ca1-xUxZrTi2-2xIn2xO7 (x = 0.05, 0.10; air and argon synthesis) were investigated by conventional solid state sintering at a temperature of 1350 °C maintained for 20 h, with a view to characterise In3+ substitution behaviour in the zirconolite phase across the Ca2+, Zr4+ and Ti4+ sites. When targeting Ca1-xZr1-xIn2xTi2O7, single phase zirconolite-2M was formed at In concentrations of 0.10 ≤ x ≤ 0.20; beyond x ≥ 0.20, a number of secondary In-containing phases were stabilised. Zirconolite-2M remained a constituent of the phase assemblage up to a concentration of x = 0.80, albeit at relatively low concentration beyond x ≥ 0.40. It was not possible to synthesise the In2Ti2O7 end member compound using a solid state route. Analysis of the In K-edge XANES spectra in the single phase zirconolite-2M compounds confirmed that the In inventory was speciated as trivalent In3+, consistent with targeted oxidation state. However, fitting of the EXAFS region using the zirconolite-2M structural model was consistent with In3+ cations accommodated within the Ti4+ site, contrary to the targeted substitution scheme. When deploying U as a surrogate for immobilised Pu in the Ca1-xUxZrTi2-2xIn2xO7 solid solution, it was demonstrated that, for both x = 0.05 and 0.10, In3+ was successfully able to stabilise zirconolite-2M when U was distributed predominantly as both U4+ and average U5+, when synthesised under argon and air, respectively, determined by U L3-edge XANES analysis.


Assuntos
Índio , Espectroscopia por Absorção de Raios X , Argônio , Oxirredução
3.
Small ; 19(8): e2206958, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36507596

RESUMO

One of the long-standing challenges of current lead-free energy storage ceramics for capacitors is how to improve their comprehensive energy storage properties effectively, that is, to achieve a synergistic improvement in the breakdown strength (Eb ) and the difference between maximum polarization (Pmax ) and remnant polarization (Pr ), making them comparable to those of lead-based capacitor materials. Here, a polymorphic polar nanoregions (PNRs) structural design by first introducing 0.06 mol BaTiO3 into Bi0.5 Na0.5 TiO3 is proposed to construct the morphotropic phase boundary with coexisting structures of micrometer-size domains and polymorphic nanodomains, enhance the electric field-induced polarization response (increase Pmax ). Then Sr(Al0.5 Ta0.5 )O3 (SAT)-doped 0.94 Bi0.5 Na0.5 TiO3 -0.06BaTiO3 (BNBT) energy storage ceramics with polymorphic PNRs structures are synthesized following the guidance of phase-field simulation and rational composition design (decrease Pr ). Finally, a large recoverable energy density (Wrec ) of 8.33 J cm-3 and a high energy efficiency (η) of 90.8% under 555 kV cm-1 are obtained in the 0.85BNBT-0.15SAT ceramic prepared by repeated rolling process method (enhance Eb ), superior to most practical lead-free competitors increased consideration of the stability of temperature (a variation <±6.2%) and frequency (Wrec > 5.0  cm-3 , η > 90%) at 400 kV cm-1 . This strategy provides a new conception for the design of other-based multifunctional energy storage dielectrics.

4.
Nanoscale Adv ; 4(11): 2468-2478, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-36134132

RESUMO

Low-dimensional high-entropy materials, such as nanoparticles and two-dimensional (2D) layers, have great potential for catalysis and energy applications. However, it is still challenging to synthesize 2D layered high-entropy materials through a bottom-up soft chemistry method, due to the difficulty of mixing and assembling multiple elements in 2D layers. Here, we report a simple polyol process for the synthesis of a series of 2D layered high-entropy transition metal (Co, Cr, Fe, Mn, Ni, and Zn) hydroxides (HEHs), involving the hydrolysis and inorganic polymerization of metal-containing species in ethylene glycol media. The as-synthesized HEHs demonstrate 2D layered structures with interlayer distances ranging from 0.860 to 0.987 nm and homogeneous elemental distribution of designed equimolar stoichiometry in the layers. These 2D HEHs exhibit a low overpotential of 275 mV at 10 mA cm-2 in a 0.1 M KOH electrolyte for the oxygen evolution reaction. Superparamagnetic spinel-type high-entropy nanoparticles can also be obtained by annealing these HEHs. Our polyol approach creates opportunities for synthesizing low-dimensional high-entropy materials with promising properties and applications.

5.
Inorg Chem ; 61(15): 5744-5756, 2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35377149

RESUMO

Zirconolite is considered to be a suitable wasteform material for the immobilization of Pu and other minor actinide species produced through advanced nuclear separations. Here, we present a comprehensive investigation of Dy3+ incorporation within the self-charge balancing zirconolite Ca1-xZr1-xDy2xTi2O7 solid solution, with the view to simulate trivalent minor actinide immobilization. Compositions in the substitution range 0.10 ≤ x ≤ 1.00 (Δx = 0.10) were fabricated by a conventional mixed oxide synthesis, with a two-step sintering regime at 1400 °C in air for 48 h. Three distinct coexisting phase fields were identified, with single-phase zirconolite-2M identified only for x = 0.10. A structural transformation from zirconolite-2M to zirconolite-4M occurred in the range 0.20 ≤ x ≤ 0.30, while a mixed-phase assemblage of zirconolite-4M and cubic pyrochlore was evident at Dy concentrations 0.40 ≤ x ≤ 0.50. Compositions for which x ≥ 0.60 were consistent with single-phase pyrochlore. The formation of zirconolite-4M and pyrochlore polytype phases, with increasing Dy content, was confirmed by high-resolution transmission electron microscopy, coupled with selected area electron diffraction. Analysis of the Dy L3-edge XANES region confirmed that Dy was present uniformly as Dy3+, remaining analogous to Am3+. Fitting of the EXAFS region was consistent with Dy3+ cations distributed across both Ca2+ and Zr4+ sites in both zirconolite-2M and 4M, in agreement with the targeted self-compensating substitution scheme, whereas Dy3+ was 8-fold coordinated in the pyrochlore structure. The observed phase fields were contextualized within the existing literature, demonstrating that phase transitions in CaZrTi2O7-REE3+Ti2O7 binary solid solutions are fundamentally controlled by the ratio of ionic radius of REE3+ cations.

6.
ACS Appl Mater Interfaces ; 13(39): 46866-46874, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34559512

RESUMO

Transparent material has been widely used in product design and has seen a large increase in its use. In this paper, a kind of aesthetically decorative 5 GHz Wi-Fi dielectric resonator antenna (DRA) of aluminum oxynitride (AlON) transparent ceramic has been designed. High-quality-factor AlON transparent dielectric ceramics were fabricated by presintering at 1780 °C and further cold isostatic pressing (CIP) under a 200 MPa argon atmosphere. For a 9.0 mm thick specimen, the in-line light transmittance reached 83%. Optimum dielectric constant (εr = 9.32), quality factor (Qf = 47 960) and temperature coefficient (TCF = -51.7 ppm/°C) was achieved in the AlON transparent ceramic by cold isostatic pressing. As a result, the proposed aesthetically decorative DRA can achieve an impedance bandwidth of 32% (4.48-6.19 GHz), a high radiation efficiency of 85%, and a low cross-polarization discrimination (XPD) of -30 dB. To achieve a broad bandwidth, the proposed antenna was excited in its dominant TE111x mode and higher-order TE113x mode. The proposed antenna is thus an excellent candidate for an indoor decoration Wi-Fi antenna.

7.
J Nanobiotechnology ; 19(1): 268, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34488792

RESUMO

BACKGROUND: Tumor-associated macrophages (TAMs) are the most abundant stromal cells in the tumor microenvironment. Turning the TAMs against their host tumor cells is an intriguing therapeutic strategy particularly attractive for patients with immunologically "cold" tumors. This concept was mechanistically demonstrated on in vitro human and murine lung cancer cells and their corresponding TAM models through combinatorial use of nanodiamond-doxorubicin conjugates (Nano-DOX) and a PD-L1 blocking agent BMS-1. Nano-DOX are an agent previously proved to be able to stimulate tumor cells' immunogenicity and thereby reactivate the TAMs into the anti-tumor M1 phenotype. RESULTS: Nano-DOX were first shown to stimulate the tumor cells and the TAMs to release the cytokine HMGB1 which, regardless of its source, acted through the RAGE/NF-κB pathway to induce PD-L1 in the tumor cells and PD-L1/PD-1 in the TAMs. Interestingly, Nano-DOX also induced NF-κB-dependent RAGE expression in the tumor cells and thus reinforced HMGB1's action thereon. Then, BMS-1 was shown to enhance Nano-DOX-stimulated M1-type activation of TAMs both by blocking Nano-DOX-induced PD-L1 in the TAMs and by blocking tumor cell PD-L1 ligation with TAM PD-1. The TAMs with enhanced M1-type repolarization both killed the tumor cells and suppressed their growth. BMS-1 could also potentiate Nano-DOX's action to suppress tumor cell growth via blocking of Nano-DOX-induced PD-L1 therein. Finally, Nano-DOX and BMS-1 achieved synergistic therapeutic efficacy against in vivo tumor grafts in a TAM-dependent manner. CONCLUSIONS: PD-L1/PD-1 upregulation mediated by autocrine and paracrine activation of the HMGB1/RAGE/NF-κB signaling is a key response of lung cancer cells and their TAMs to stress, which can be induced by Nano-DOX. Blockade of Nano-DOX-induced PD-L1, both in the cancer cells and the TAMs, achieves enhanced activation of TAM-mediated anti-tumor response.


Assuntos
Antígeno B7-H1/efeitos dos fármacos , Doxorrubicina/farmacologia , Inibidores de Checkpoint Imunológico/farmacologia , Nanodiamantes/química , Macrófagos Associados a Tumor , Células A549 , Animais , Antígeno B7-H1/genética , Linhagem Celular Tumoral , Citocinas/metabolismo , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microambiente Tumoral/efeitos dos fármacos
8.
Int J Pharm ; 606: 120872, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34246743

RESUMO

Doxorubicin (DOX) has been widely incorporated in various delivery forms for tareted treatment of malignant tumors such as triple-negative breast cancer (TNBC), with numerous studies reporting higher therapeutic efficacy and lower toxicity at the same time. However, little attention has been paid to whether DOX in a delivery form acts with the same actions and processes as in free form at the cellular level. This question was investigated in the present study wherein DOX conjugated with polyglycerol-coated nanodiamonds through the pH-sensitive hydrazone bond (Nano-DOX) was compared with DOX in free form on the 4T1 mouse TNBC model. We first found Nano-DOX to have a distinct intracellular distribution profile from DOX. Internalized Nano-DOX mainly stayed in the lysosomes slowly releasing DOX into the cytoplasm and then the nucleus whereas DOX displayed both nuclear and lysosomal distribution after cell uptake. Next, Nano-DOX was shown to induce endoplasmic reticulum (ER) stress without substantial DNA damage while DOX caused massive DNA damage as well as ER stress. Consequently, Nano-DOX only caused minimal activation of pro-inflammatory signaling mediated by MAPK/ERK, NF-κB and STAT3 as seen in response to DOX-inflicted DNA damage. Consistently, DOX-induced activities of ABC transporters, CXCL-1, GM-CSF and IL-6, which are tumor protective events downstream to the pro-inflammatory signaling, were also minimal in Nano-DOX-treated cancer cells. These findings are compelling proof that a chemotherapy in nano form can have distinct intracellular pharmacokinetics from its free from, which can result in altered cellular effects of the drug. Implications of these findings are discussed with an emphasis on nano-drug design, tumor pharmacology and chemoresistance.


Assuntos
Nanodiamantes , Neoplasias de Mama Triplo Negativas , Animais , Linhagem Celular Tumoral , Doxorrubicina , Humanos , Hidrazonas , Camundongos
9.
J Hazard Mater ; 415: 125596, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-33725552

RESUMO

The sustainable development of civil nuclear energy requires the fabrication of the durable nuclear wasteforms, in particular for high-level radioactive waste, which involves the design of the composition and microstructure. Herein, we demonstrated that high-entropy ceramics (Eu1-xGdx)2(Ti0.2Zr0.2Hf0.2Nb0.2Ce0.2)2O7 are the potential candidate as immobilizing hosts for high-level radioactive waste. The static aqueous leaching test indicates that the normalized leaching rates for the simulated radionuclides Ce (LRCe) and Gd (LRGd) in as-prepared high-entropy ceramics are approximately 10-6~10-8 g·m-2·d-1 after 42 days testing, much lower than those reported values in doped-Gd2Zr2O7 (10-6~10-3 g·m-2·d-1). The excellent chemical durability is mainly due to the synergistic effects of the compositional complexity and severe lattice distortion. Compared to their ternary oxides, the low oxygen vacancy concentration slows down the migration and diffusion of cations. Moreover, the lattice distortion increases the lattice potential energy, also inhibiting the migration of cations. This study provides a strategy for the development and application of high-entropy ceramics as the wasteforms.

10.
Inorg Chem ; 60(4): 2553-2562, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33491452

RESUMO

Low-temperature soft chemical synthesis routes to transition-metal nitrides are of interest as an alternative to conventional high-temperature ammonolysis reactions involving large volumes of chemotoxic NH3 gas. One such method is the reaction between metal oxides and NaNH2 at ca. 200 °C to yield the counterpart nitrides; however, there remains uncertainty regarding the reaction mechanism and product phase assemblage (in particular, noncrystalline components). Here, we extend the chemical tool box and mechanistic understanding of such reactions, demonstrating the nitridation of Fe3O4 by reaction with NaNH2 at 170-190 °C, via a pseudomorphic reaction. The more reduced Fe3O4 precursor enabled nitride formation at lower temperatures than the previously reported equivalent reaction with Fe2O3. The product phase assemblage, characterized by X-ray diffraction, thermogravimetric analysis, and 57Fe Mössbauer spectroscopy, comprised 49-59 mol % ε-Fe2+xN, accompanied by 29-39 mol % FeO1-xNx and 8-14 mol % γ″-FeN. The oxynitride phase was apparently noncrystalline in the recovered product but could be crystallized by heating at 180 °C. Although synthesis of transition-metal nitrides is achieved by reaction of the counterpart oxide with NaNH2, it is evident from this investigation that the product phase assemblage may be complex, which could prove a limitation if the objective is to produce a single-phase product with well-defined electrical, magnetic, or other physical properties for applications. However, the significant yield of the FeO1-xNx oxynitride phase identified in this study opens the possibility for the synthesis of metastable oxynitride phases in high yield, by reaction of a metal oxide substrate with NaNH2, with either careful control of H2O concentration in the system or postsynthetic hydrolysis and crystallization.

11.
Inorg Chem ; 59(24): 18407-18419, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33296192

RESUMO

The synthesis, structure, and thermal stability of the periodate double perovskites A2NaIO6 (A= Ba, Sr, Ca) were investigated in the context of potential application for the immobilization of radioiodine. A combination of X-ray diffraction and neutron diffraction, Raman spectroscopy, and DFT simulations were applied to determine accurate crystal structures of these compounds and understand their relative stability. The compounds were found to exhibit rock-salt ordering of Na and I on the perovskite B-site; Ba2NaIO6 was found to adopt the Fm-3m aristotype structure, whereas Sr2NaIO6 and Ca2NaIO6 adopt the P21/n hettotype structure, characterized by cooperative octahedral tilting. DFT simulations determined the Fm-3m and P21/n structures of Ba2NaIO6 to be energetically degenerate at room temperature, whereas diffraction and spectroscopy data evidence only the presence of the Fm-3m phase at room temperature, which may imply an incipient phase transition for this compound. The periodate double perovskites were found to exhibit remarkable thermal stability, with Ba2NaIO6 only decomposing above 1050 °C in air, which is apparently the highest recorded decomposition temperature so far recorded for any iodine bearing compound. As such, these compounds offer some potential for application in the immobilization of iodine-129, from nuclear fuel reprocessing, with an iodine incorporation rate of 25-40 wt%. The synthesis of these compounds, elaborated here, is also compatible with both current conventional and future advanced processes for iodine recovery from the dissolver off-gas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...