Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fish Physiol Biochem ; 50(2): 435-448, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38047980

RESUMO

Schizothorax oconnori (S. oconnori) is an economically important fish in Tibet. Oocyte maturation is a physiological process that is of great significance to reproduction and seed production in S. oconnori, yet little is currently known regarding the molecular mechanisms of oocyte development in this species. To identify candidate genes involved in reproduction of female fish, a combination of PacBio and Illumina HiSeq technologies was employed to provide deep coverage of the oocyte transcriptome. Transcriptome analysis revealed several candidate genes that are potentially involved in the regulation of oocyte maturation in S. oconnori, including GIRK1, CHRM3, NPY2R, GABRA3, GnRH3, mGluR1α, GPER1, GDF9, HSP90, and ESR2. Genes that are significantly expressed during oocyte maturation mainly contribute to the GPCR signaling pathway and the estrogen signaling pathway. Neurotransmitter (Ach, NPY, and GABA) and peptide hormone (GnRH3) binding to G protein-coupled receptors (GPCRs) frees G-protein ßγ subunits to interact with the G protein-gated inward rectifier K+ channel 1 (GIRK1). This process helps release K+ from granulosa cells to maturing oocytes, allowing yolk globule fusion. This mechanism may play an important role in oocyte maturation in S. oconnori. In conclusion, this study provides a valuable basis for deciphering the reproductive system in S. oconnori during the oocyte maturation process.


Assuntos
Cyprinidae , Cipriniformes , Feminino , Animais , Cipriniformes/genética , Oócitos/metabolismo , Oogênese/genética , Cyprinidae/genética , Perfilação da Expressão Gênica/veterinária , Transcriptoma
2.
Carcinogenesis ; 44(12): 847-858, 2023 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-37787763

RESUMO

OBJECTIVES: To explore the regulatory networks that underlie the development of chemoresistance in bladder cancer. METHODS: We analyzed profiles of differentially expressed long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), microRNAs (miRNAs) and messenger RNA (mRNAs) in gemcitabine-resistant/sensitive bladder cancer cells using next-generation sequencing data. RESULTS: Hundreds of differentially expressed lncRNAs and miRNAs and thousands of circRNAs and mRNAs were identified. Bioinformatics analysis revealed the chromosomal localizations, classification and coexpression of mRNAs, as well as candidates for cis and trans regulation by lncRNAs. Furthermore, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of differentially expressed mRNAs and circRNAs indicated important functional roles of coregulated RNAs, thus establishing competing endogenous RNA (ceRNA) and protein-protein interactions networks that may underlie chemoresistance in bladder cancer. We demonstrated that lncRNA LINP1 can act as a ceRNA by inhibiting miR-193a-5p to increase TP73 expression; and that lncRNA ESRG and hsa_circ_0075881 can simultaneously bind miR-324-3p to increase ST6GAL1 expression. Modulation of ceRNA network components using ablation and overexpression approaches contributed to gemcitabine resistance in bladder cancer cells. CONCLUSIONS: These results elucidate mechanisms by which lncRNAs and circRNAs coregulate the development of bladder cancer cell resistance to gemcitabine, thus laying the foundation for future research to identify biomarkers and disease targets.


Assuntos
Carcinoma , MicroRNAs , RNA Longo não Codificante , Neoplasias da Bexiga Urinária , Humanos , RNA Circular/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Gencitabina , RNA Endógeno Competitivo , Bexiga Urinária/metabolismo , Redes Reguladoras de Genes , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética
3.
Front Physiol ; 13: 926795, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35923240

RESUMO

Coprophagy is an instinctive behavior in rabbit with important effects on growth and reproductive performance. The underlying mechanism of this effect in rabbit is unknown. Here, we used Elizabeth circle as a coprophagy preventing model in female rabbits and assess feed intake, growth, and reproductive performance. We found that preventing coprophagy did not affect feed intake but decreased body weight and weight of several organs and tissues and resulted in complete reproductive failure during the late pregnancy period, accompanied by reduced levels of plasma progesterone. RNA-seq analysis of rabbit ovarian tissues revealed that preventing coprophagy affected significantly 241 genes (DEGs), with the large majority being downregulated. Bioinformatic analyses revealed that those DEGs are mostly involved in apoptosis, immune response, and metabolic pathways. Among DEGs, the lysosomal cysteine protease cathepsin B (CTSB) was significantly downregulated in the coprophagy prevention group. Further studies using siRNA and adenovirus overexpression systems revealed that CTSB promotes the proliferation of rabbit granulosa cells (GCS) and prevents apoptosis. Measurement of transcripts coding for proteins related to apoptosis revealed a minor transcriptomic effect of CTSB, indicating that its effect is likely post-transcriptional. Overexpression of CTSB increased secretion of progesterone and estradiol, partly via upregulation of CYP19A1 while inhibition of CTSB decreased progesterone secretion partly via downregulation of the StAR gene. In conclusion, our study demonstrated the detrimental effect on reproduction by preventing coprophagy with a main role for this response played by CTSB on the granulosa cells of the ovary.

4.
Front Genet ; 13: 811849, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35664312

RESUMO

Background: Patterns of liver energy metabolism significantly differ from birth to adult in cattle undergoing change of rumen rumination. However, the genes involve in hepatic energy metabolism during bovine development and how regulate are still unclear. Methods: In this study, 0-day-old newborn calves (0W) and 9-week-old weaned calves (9W) were used to investigate differences in liver glucose metabolism at these stages of calf development. We did this primarily through the quantitation of energy metabolism indicators, then sequencing the liver transcriptome for each group of claves. Results: The transcriptome results showed 979 differentially expressed genes (DEGs), enriched in animal organ development, catabolic process, transmembrane transport. SLC16A1 involved in that and was locked to investigate. We explored the effects of SLC16A1 on glucose and lactate flux in vitro. We identified and verified its target, miR-22-3p, through bioinformatics and luciferase reporter assays. Moreover, this study found that miR-22-3p decreased cell activity by negatively regulating the SLC16A1. Importantly, our result showed the insulin-induced SLC16A1 mRNA expression decreased, regulated by promoter activity rather than miR-22-3p. Conclusions: Our study illustrates the role of SLC16A1 in the liver mediated metabolism of developing calves. These data enrich our knowledge of the regulatory mechanisms of liver mediated glucose metabolism in developing cattle.

5.
Front Genet ; 12: 677066, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34691140

RESUMO

Schizothorax o'connori (S. o'connori) is a representative tetraploid species in the subfamily Schizothoracinae and an important endemic fish in the Qinghai-Tibet Plateau. However, the domestication of S. o'connori remains challenging due to the lack of basic research. Here, we investigated the effects of artificial feeding on the oocytes and liver of S. o'connori by comparing the histological, metabolomic, and transcriptomic data. Histological results showed that the oocytes and liver of captive-reared S. o'connori had abnormal cell morphology. After comparison with the self-built database, a total of 233 metabolites were annotated. In oocytes, a total of 37 differentially accumulated metabolites (DAMs) were detected and two pathways were significantly enriched. There were obvious differences in the metabolites related to ovarian development, including pregnenolone and arachidonic acid. In liver, a total of 70 DAMs were detected and five pathways were significantly enriched. Based on the transcriptomic data, a total of 159 differentially expressed genes (DEGs) were significantly related with cell growth and death pathway in oocytes, while a total of 2841 DEGs were significantly related with 102 pathways in liver. Comparing the metabolomic and transcriptomic data showed that there were three common significant enrichment pathways in liver, including biosynthesis of unsaturated fatty acids, starch and sucrose metabolism, and fatty acid biosynthesis. These results showed that special attention should be given to the composition and intake of fatty acids during the artificial breeding of S. o'connori. In addition, many of metabolite-gene pairs were related to adenosine 5'-diphosphate, adenosine monophosphate, and pregnenolone. In summary, these data provide an overview of global metabolic and transcriptomic resources and broaden our understanding of captive-reared S. o'connori.

6.
J Anim Physiol Anim Nutr (Berl) ; 104(2): 749-757, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31943422

RESUMO

Cecotrophy is a special behaviour of rabbits. Eating soft faeces can improve feed efficiency and maintain gut flora in rabbits. In our previous study, we found that fasting from soft faeces significantly reduced growth rate and total cholesterol (TC) in New Zealand white rabbits (NZW rabbits), thereby resulting in lower values for body weight and fat deposition in the soft faeces fasting group than in the control group. However, it has not been demonstrated whether cecotrophy by NZW rabbits can regulate lipid metabolism by changing the diversity of caecal microorganisms. In this study, thirty-six 28-day-old weaned NZW female rabbits were randomly divided into two groups (the soft faeces fasting group and the control group) and fed to 90 days. Rabbits in the experimental group were treated with an Elizabeth circle to prevent them from eating their soft faeces. Then, the caecal contents of three rabbits from the soft faeces fasting group and three rabbits from the control group were collected for metagenomic sequencing. We found that the abundance of Bacteroides increased, while Ruminococcus decreased, compared with the control group after fasting from soft faeces. Relative abundance was depressed for genes related to metabolic pathways such as ascorbate and aldarate metabolism, riboflavin metabolism and bile secretion. Moreover, there was a general correlation between variation in microbial diversity and fat deposition. Bacteroides affects body weight and TC by participating in the riboflavin metabolism pathway. By investigating the effect of cecotrophy on caecal microorganisms of rabbits, we identified the key microorganisms that regulate the rapid growth performance of NZW rabbits, which may provide useful reference for the future research and development of microecological preparations for NZW rabbits.


Assuntos
Ceco/microbiologia , Gorduras/metabolismo , Coelhos/fisiologia , Animais , Coprofagia , Feminino , Microbioma Gastrointestinal , Coelhos/microbiologia
7.
Animals (Basel) ; 9(9)2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31484452

RESUMO

In order to investigate the effects of fasting caecotrophy on hepatic lipid metabolism in rabbits, 12 weaned female New Zealand white rabbits were randomly divided into (n = 6/group) a control and fasting caecotrophy group. Rabbits in the experimental group were treated with an Elizabeth circle to prevent them from eating their own soft feces for a 60-day period. Growth and blood biochemical indices, transcriptome sequencing and histology analysis of the liver were performed. Compared with the control group, final weight, weight gain, liver weight, growth rate and feed conversion ratio, all decreased in the experimental group (p < 0.05). RNA sequencing (RNA-seq) analysis revealed a total of 301.2 million raw reads (approximately 45.06 Gb of high-quality clean data) that were mapped to the rabbit genome. After a five-step filtering process, 14,964 genes were identified, including 444 differentially expressed genes (p < 0.05, foldchange ≥ 1). A number of differently expressed genes linked to lipid metabolism were further analyzed including CYP7A1, SREBP, ABCA1, GPAM, CYP3A1, RBP4 and RDH5. The KEGG (Kyoto Encyclopedia of Genes and Genomes) annotation of the differentially expressed genes indicated that main pathways affected were pentose and glucuronide interactions, starch and sucrose metabolism, retinol metabolism and PPAR signaling. Overall, the present study revealed that preventing caecotrophy reduced growth and altered lipid metabolism, both of which will help guide the development of new approaches for rabbits' feeding and production. These data also provide a reference for studying the effects of soft feces in other small herbivores.

8.
Animals (Basel) ; 9(8)2019 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-31357699

RESUMO

Rumen development in calves is affected by many factors, including dietary composition. MicroRNAs (miRNAs) are known to function in the development of the rumen in cattle, what is not known is how these miRNAs function in rumen development of calves fed with high and low ratios of non-fibrous carbohydrate (NFC)/neutral detergent fiber (NDF). A total of six healthy Charolais hybrids bull calves of similar weight were divided into two groups; three calves were fed a mixed diet with NFC/NDF = 1.35 (H group), and three were fed a mixed diet with NFC/NDF = 0.80 (L group). After 105 days on the diet, calves were sacrificed and rumen tissues were collected. Tissues were subjected to histological observation and miRNA expression analysis. Functional enrichment analysis was conducted on the target genes of the miRNAs. Targeting and regulatory relationships were verified by luciferase reporter assay and quantitative PCR (qPCR). We found that the length of rumen papilla in the L group was significantly greater than that in the H group, while the width of rumen papilla in H group was significantly greater than that that in L group. We identified 896 miRNAs; 540 known miRNAs, and 356 novel predicted miRNAs. After statistical testing, we identified 24 differentially expressed miRNAs (DEmiRNAs). miRNA-mRNA-cluster network analysis and literature reviews revealed that cell proliferation, differentiation, physical and nutrient stimuli processes participate in rumen development under different NFC/NDF levels. The regulatory relationships between three DEmiRNAs and five target genes were verified by examining the levels of expression. The binding sites on bta-miR-128 for the peroxisome proliferator activated receptor gamma (PPARG) and solute carrier family 16 member 1 (SLC16A1) genes were investigated using a dual luciferase assay. The results of this study provide insight into the role of miRNAs in rumen development in calves under different NFC/NDF levels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...