Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmacol Res ; 196: 106930, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37722518

RESUMO

Postmenopausal osteoporosis is a common bone metabolic disease, and gut microbiota (GM) imbalance plays an important role in the development of metabolic bone disease. Here, we show that ovariectomized mice had high levels of lipopolysaccharide in serum and gut microbiota dysbiosis through increases in luminal Firmicutes:Bacteroidetes ratio. We depleted the GM through antibiotic treatment and observed improvements in bone mass, bone microstructure, and bone strength in ovariectomized mice. Conversely, transplantation of GM adapted to ovariectomy induced bone loss. However, GM depletion reversed ovariectomy-induced gene expression in the tibia and increased periosteal bone formation. Furthermore, bioinformatics analysis revealed that the G-protein-coupled bile acid receptor (TGR5) and systemic inflammatory factors play key roles in bone metabolism. Silencing TGR5 expression through small interfering RNA (siRNA) in the local tibia and knockout of TGR5 attenuated the effects of GM depletion in ovariectomized mice, confirming these findings. Thus, this study highlights the critical role of the GM in inducing bone loss in ovariectomized mice and suggests that targeting TGR5 within the GM may have therapeutic potential for postmenopausal osteoporosis.


Assuntos
Microbioma Gastrointestinal , Osteoporose Pós-Menopausa , Humanos , Feminino , Camundongos , Animais , Osteoporose Pós-Menopausa/tratamento farmacológico , Receptores Acoplados a Proteínas G/metabolismo , Densidade Óssea , Estrogênios/uso terapêutico
2.
Bioact Mater ; 21: 44-56, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36017072

RESUMO

Implant-associated infections (IAIs) caused by biofilm formation are the most devastating complications of orthopedic surgery. Statins have been commonly and safely used drugs for hypercholesterolemia for many years. Here, we report that simvastatin-hydroxyapatite-coated titanium alloy prevents biofilm-associated infections. The antibacterial properties of simvastatin against Staphylococcus aureus and Staphylococcus epidermidis biofilms in vitro was confirmed by crystal violet staining and live-dead bacterial staining. We developed a simvastatin-and hydroxyapatite (Sim-HA)-coated titanium alloy via electrochemical deposition. Sim-HA coatings inhibited Staphylococcus aureus biofilm formation and improved the biocompatibility of the titanium alloy. Sim-HA coatings effectively prevented Staphylococcus aureus IAI in rat femurs, as confirmed by radiological assessment and histological examination. The antibacterial effects of the Sim-HA coatings were attributed to their inhibitory effects on biofilm formation, as verified by scanning electron microscopic observations and bacterial spread plate analysis. In addition, the Sim-HA coatings enhanced osteogenesis and osteointegration, as verified by micro-CT, histological evaluation, and biomechanical pull-out tests. In summary, Sim-HA coatings are promising implant materials for protection against biofilm-associated infections.

3.
J Bone Miner Metab ; 39(6): 925-933, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34091742

RESUMO

INTRODUCTION: This study aimed to observe the effects of long-term alendronate pretreatment on the healing of osteoporotic calvarial defects, and further investigate the effect of alendronate combined with once-weekly parathyroid hormone following 12 weeks of alendronate treatment in ovariectomized rats. MATERIALS AND METHODS: Thirty 3-month-old female rats were ovariectomized, and 24 rats received alendronate for 12 weeks. Then, a critical defect was created in the calvaria of all animals. Immediately after osteotomy, the animals received one of five treatments for 8 weeks: (1) continuation of vehicle (group E), (2) alendronate followed by vehicle (group A), (3) continuation of alendronate (group B), (4) alendronate followed by once-weekly parathyroid hormone alone (group C), or (5) continuation of alendronate combined with once-weekly parathyroid hormone (group D). Calvarial defect healing was assessed using dual-energy X-ray absorptiometry, micro-computed tomography, histology, and sequential fluorescence labeling. RESULTS: Group E showed a significantly higher volume of newly formed bone than groups A, B, C, and D. Evidence of new dense bone formation in group E was observed histologically. In addition, the immunohistochemical expression of runt-related transcription factor 2 was increased in group E but inhibited in groups A, B, C, and D. Sequential immunofluorescence also showed inhibited mineral apposition in groups A, B, C, and D compared with group E. CONCLUSION: The present study shows that long-term pretreatment with alendronate inhibited calvarial defect healing in osteoporotic rats, and this effect could not be reversed by stopping alendronate, switching to parathyroid hormone, or combining with once-weekly parathyroid hormone.


Assuntos
Alendronato , Densidade Óssea , Absorciometria de Fóton , Alendronato/farmacologia , Animais , Feminino , Hormônio Paratireóideo , Ratos , Microtomografia por Raio-X
4.
J Orthop Res ; 39(10): 2103-2115, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33325546

RESUMO

This study examined the effect of once-weekly parathyroid hormone (PTH) combined with alendronate upon osteoporotic fracture healing after long-term alendronate anti-osteoporosis therapy. Seventy-six 12-week-old female Sprague-Dawley rats were either sham operated or bilaterally ovariectomized (OVX). Following confirmation of osteoporosis 3 months after OVX, the remaining 64 animals received alendronate therapy. After 3 months of alendronate treatment, all rats underwent unilateral transverse tibial osteotomy. Animals were immediately randomly assigned to one of four groups: (1) alendronate followed by vehicle (ALN-VEH), (2) continuation of alendronate (ALN-ALN), (3) alendronate followed by once-weekly PTH alone (ALN-PTH), (4) continuation of alendronate combined with once-weekly PTH (ALN-ALN + PTH) until collection at 4 or 8 weeks after osteotomy. The fractured tibia was assessed using x-ray, dual-energy x-ray absorptiometry, microcomputed tomography, biomechanical testing, histology, and sequential fluorescence labeling. The ALN-ALN + PTH treatment significantly increased total callus volume, mineralized callus volume, mineralized callus volume/total callus volume, and biomechanical strength of the callus relative to ALN-VEH and ALN-PTH treatments at both 4 and 8 weeks and produced more mature trabecular bone compared with ALN-ALN treatment at 8 weeks. RANKL/osteoprotegerin (OPG) are osteoclastogenesis markers, while cluster of differentiation 31 (CD31) is an important marker of angiogenesis. Qualitative immunohistochemical analysis revealed that CD31 and OPG expression was was strong after ALN-ALN + PTH compared with ALN-ALN treatment, whereas RANKL expression was weak after ALN-ALN + PTH versus ALN-PTH treatment. Our study showed that once-weekly PTH combined with alendronate was beneficial in promoting the healing of fractures acquired after long-term alendronate therapy in OVX-induced osteoporotic rats.


Assuntos
Conservadores da Densidade Óssea , Osteoporose , Fraturas por Osteoporose , Animais , Feminino , Ratos , Alendronato/farmacologia , Alendronato/uso terapêutico , Densidade Óssea , Conservadores da Densidade Óssea/farmacologia , Conservadores da Densidade Óssea/uso terapêutico , Consolidação da Fratura , Fraturas por Osteoporose/tratamento farmacológico , Ovariectomia , Hormônio Paratireóideo/farmacologia , Ratos Sprague-Dawley , Microtomografia por Raio-X/métodos
5.
J Bone Miner Res ; 36(3): 567-578, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33181861

RESUMO

Systemic bone loss after initial fracture contributes to an increased risk of secondary fracture. Clinical research has revealed an association between the risk of future fracture and the number or magnitude of prior fractures. However, the change in systemic bone mass after single versus multiple fractures is unknown. We used ipsilateral femur and tibia fractures as multiple fractures and a femur or tibia fracture as a single fracture to investigate the influence of single versus multiple fractures on systemic bone mass. Seventy-two adult male C57BL/6J mice underwent transverse osteotomies of the ipsilateral femur and/or tibia with subsequent internal fixation. The dynamic change of in vivo whole-body BMD was assessed at 4 days, 2 weeks, and 4 weeks after fracture. The microstructure of the L5 vertebral body and contralateral femur was assessed using micro-CT (µCT) and biomechanical tests (vertebral compression test and three-point bending test) at 2 and 4 weeks. Tartrate-resistant acid phosphatase (TRAP) staining, sequential fluorescence labeling, and systemic inflammatory cytokines were also quantified. A greater decrease in whole-body BMD was observed after multiple than single fractures. The trabecular bone volume fraction, trabecular number, and trabecular thickness of the L5 vertebral body were significantly reduced. There were no significant differences in cortical thickness, trabecular bone microstructure, or bone strength in the contralateral femur. At 4 days and 2 weeks, we observed significant increases in the serum levels of IL-6 and TNF-α. We also observed an increase in the osteoclast number of the L5 vertebral body at 4 days. These data indicate that systemic bone loss might increase with the number or severity of prior fractures, and the mechanism may be partly associated with an increased osteoclast number and a more severe inflammatory response. © 2020 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Doenças Ósseas Metabólicas , Fraturas Múltiplas , Fraturas da Coluna Vertebral , Animais , Densidade Óssea , Masculino , Camundongos , Camundongos Endogâmicos C57BL
6.
Clin Sci (Lond) ; 134(23): 3159-3174, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33215637

RESUMO

Gut microbiota dysbiosis has been studied under the pathological conditions of osteoarthritis (OA). However, the effect of antibiotic-induced gut flora dysbiosis on OA remains incompletely understood at present. Herein, we used a mouse (8 weeks) OA model of destabilization of the medial meniscus (DMM) and gut microbiome dysbiosis induced by antibiotic treatment with ampicillin and neomycin for 8 weeks. The results show that antibiotic-induced intestinal microbiota dysbiosis reduced the serum level of lipopolysaccharide (LPS) and the inflammatory response, such as suppression of the levels of tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6), which can lead to decreased matrix metalloprotease-13 (MMP-13) expression and improvement of OA after joint injury. In addition, trabecular thickness (Tb.Th) and osteophyte scores were increased significantly in antibiotic-induced male mice compared with female mice. We further used network correlation analysis to verify the effect of gut microbiota dysbiosis on OA. Therefore, the present study contributes to our understanding of the gut-joint axis in OA and reveals the relationship between the inflammatory response, sex and gut microbiota, which may provide new strategies to prevent the symptoms and long-term sequelae of OA. Conclusion: Our data showed that gut microbiome dysbiosis alleviates the progression of OA.


Assuntos
Progressão da Doença , Disbiose/microbiologia , Microbioma Gastrointestinal , Osteoartrite/microbiologia , Osteoartrite/patologia , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biomarcadores/sangue , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Calcificação Fisiológica/efeitos dos fármacos , Cartilagem/efeitos dos fármacos , Cartilagem/patologia , Disbiose/sangue , Disbiose/complicações , Disbiose/tratamento farmacológico , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Inflamação/patologia , Masculino , Metaloproteinase 13 da Matriz/metabolismo , Meniscos Tibiais/efeitos dos fármacos , Meniscos Tibiais/patologia , Camundongos Endogâmicos C57BL , Esclerose/complicações , Esclerose/patologia , Caracteres Sexuais
7.
J Orthop Surg Res ; 14(1): 204, 2019 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-31272458

RESUMO

BACKGROUND: Osteonecrosis of the femoral head (ONFH) is a disabling disease. Early treatment is crucial to the prognosis of the disease. Core decompression (CD) is one of the most commonly used methods for the treatment of early ONFH. But it could not prevent the collapse of the necrotic femoral head. How to improve the therapeutic effect of early ONFH on the basis of CD has become an area of focused research. METHODS: Functional ß-tricalcium phosphate (ß-TCP) scaffolds modified by DPIYALSWSGMA (DPI) peptide, a bone marrow-derived mesenchymal stem cell (BMSC) affinity peptide, were constructed using an adsorption/freeze-drying strategy. The affinity of DPI peptide towards rabbit BMSCs was investigated using flow cytometry and fluorescence cytochemistry. In vitro cell adhesion assay was performed to study the adherent ability of rabbit BMSCs on functional ß-TCP scaffolds. After the rabbit model of early ONFH was established, DPI peptide-modified and pure ß-TCP scaffolds were transplanted into the remaining cavity after CD. Meanwhile, rabbits treated with pure CD were used as blank control. Twelve weeks after surgery, histological analysis was performed to show the therapeutic effect of three methods on early ONFH. RESULTS: The result of ImageXpress Micro Confocal indicated that fabricated DPI peptide-modified functional ß-TCP scaffolds exhibited green fluorescence. In flow cytometry, the average fluorescence intensity for rabbit BMSCs incubated with FITC-DPI was significantly higher than that of FITC-LSP (P = 2.733 × 10-8). In fluorescence cytochemistry, strong fluorescent signals were observed in rabbit BMSCs incubated with FITC-DPI and FITC-RGD, whereas no fluorescent signals in cells incubated with FITC-LSP. In cell adhesion assay, the number of adherent cells to ß-TCP-DPI scaffolds was more than that of pure ß-TCP scaffolds (P = 0.033). The CD + ß-TCP-DPI group expressed the lowest vacant bone lacunae percentage compared to CD group (P = 2.350 × 10-4) and CD + ß-TCP group (P = 0.020). The expression content of COL1 in CD + ß-TCP-DPI group was much higher than CD group (P = 1.262 × 10-7) and CD + ß-TCP group (P = 1.666 × 10-7) according to the integrated optical density (IOD) analyses. CONCLUSION: Functional ß-TCP scaffolds modified by DPI peptide were successfully synthesized using an adsorption/freeze-drying strategy. DPI peptide has good affinity towards rabbit BMSCs. The adhesion of rabbit BMSCs on DPI peptide-modified ß-TCP scaffolds was apparently enhanced. CD followed by implantation of DPI peptide-modified ß-TCP scaffolds can apparently improve the treatment of early ONFH compared with pure CD and CD followed by implantation of unmodified ß-TCP scaffolds. Our current study provides an improved method for the treatment of early ONFH.


Assuntos
Materiais Biocompatíveis/administração & dosagem , Fosfatos de Cálcio/administração & dosagem , Necrose da Cabeça do Fêmur/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/fisiologia , Alicerces Teciduais , Animais , Células Cultivadas , Necrose da Cabeça do Fêmur/patologia , Masculino , Coelhos
8.
Mol Med Rep ; 20(2): 1157-1166, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31173215

RESUMO

Osteonecrosis of the femoral head (ONFH) is a common osteological disease. Treatment of ONFH prior to the collapse of the femoral head is critical for increasing therapeutic efficiency. Tissue engineering therapy using bone mesenchymal stem cells (BMSCs) combined with a scaffold is a promising strategy. However, it is currently unclear how to improve the efficiency of BMSC recruitment under such conditions. In the present study, a specific cyclic peptide for Sprague­Dawley rat BMSCs, CTTNPFSLC (known as C7), was used, which was identified via phage display technology. Its high affinity for BMSCs was demonstrated using flow cytometry and fluorescence staining. Subsequently, the cyclic peptide was placed on ß­tricalcium phosphate (ß­TCP) scaffolds using absorption and freeze­drying processes. Adhesion, expansion and proliferation of BMSCs was investigated in vitro on the C7­treated ß­TCP scaffolds and compared with pure ß­TCP scaffolds. The results revealed that C7 had a promoting effect on the adhesion, expansion and proliferation of BMSCs on ß­TCP scaffolds. Therefore, C7 may be effective in future tissue engineering therapy for ONFH.


Assuntos
Fosfatos de Cálcio , Adesão Celular , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese , Peptídeos Cíclicos/farmacologia , Alicerces Teciduais/química , Animais , Proliferação de Células , Necrose da Cabeça do Fêmur/terapia , Células-Tronco Mesenquimais/fisiologia , Peptídeos Cíclicos/uso terapêutico , Ratos , Ratos Sprague-Dawley
9.
Mol Med Rep ; 19(1): 407-413, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30431079

RESUMO

Osteonecrosis of the femoral head (ONFH) is a refractory disease present worldwide. In the development of therapies for this disease, mesenchymal stem cells (MSC) are a promising candidate cell source in tissue engineering (TE) and regenerative medicine. MSCs harvested from bone marrow (BM) are the gold standard. A significant barrier for BMMSC­based therapies is the inability and decreased number of BMMSCs in the tissues of interest. The ability to recruit BMMSCs efficiently to defective or injured sites in tissues or organs, for example the necrotic area of the femoral head in vivo, has been a major concern. In the present study, a peptide sequence (CDNVAQSVC), termed D7, was identified through phage display technology using C57BL/6 mouse BMMSCs. Subsequent analysis suggested that the identified loop­constrained heptapeptide exhibited a high specific affinity for mouse BMMSCs. Due to this specific affinity for BMMSCs, the present study provides a selective method to improve MSC­based TE strategies for the treatment of ONFH.


Assuntos
Medula Óssea/metabolismo , Medula Óssea/fisiologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Peptídeos Cíclicos/metabolismo , Animais , Células da Medula Óssea/metabolismo , Células da Medula Óssea/fisiologia , Células Cultivadas , Necrose da Cabeça do Fêmur/metabolismo , Necrose da Cabeça do Fêmur/terapia , Camundongos , Camundongos Endogâmicos C57BL , Osteogênese/fisiologia , Osteonecrose/metabolismo , Osteonecrose/terapia , Engenharia Tecidual/métodos
10.
Oncol Lett ; 11(3): 1685-1692, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26998062

RESUMO

Due to frequent phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway dysregulation, AKT is typically accepted as a promising anticancer therapeutic target. mTOR, in particular, represents a suitable therapeutic target for hepatocellular carcinoma, whilst suppressor with morphogenetic effect on genitalia family member-1 (SMG-1) is believed to serve a potential tumor suppressor role in human cancer. Despite SMG-1 and mTOR belonging to the same PI3K-related kinase family, the interactions between them are not yet fully understood. In the present study, a novel pyrrolopyrimidine-derived compound, AZD5363, was observed to suppress proliferation in liver cancer Hep-G2 and Huh-7 cells by inhibiting the phosphorylation of downstream molecules in the AKT signal pathway, in a dose- and time-dependent manner. AZD5363 activated the phosphorylation of mTOR, dependent on the liver cancer cell type, as it may have differing effects in various liver cancer cell lines. Additionally, AZD5363 also activated SMG-1 within the same liver cancer cells types, which subsequently activated the phosphorylation of mTOR. In conclusion, the present study indicates that AZD5363 inhibited phosphorylation of AKT downstream molecules, and activated phosphorylation of mTOR and SMG-1, dependent on the liver cancer type.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...