Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 195: 110861, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33600822

RESUMO

Cerium dioxide nanoparticles (CeO2 NPs) are ubiquitous in the water environment due to the extensive commercial applications. The complexity of heterogeneous humic acid (HA) plays a significant role in affecting the physicochemical properties of CeO2 NPs in aqueous environments. However, the effects of light intensities and HA fractions on the interaction mechanism between CeO2 NPs and HA are poorly understood. Here, we provided the evidence that both light intensities (>3 E L-1 s-1) and molecular weights (>10 kDa) can effectively affect the interactions between CeO2 NPs and HA. The absolute content of reactive oxygen species (ROS) and quantum yield (Φ) of 3HA* were inhibited when HA (10 mg of C L-1) interacts with CeO2 NPs. However, they were positively correlated with the increasing irradiation time and simulated sunlight intensities. High molecular weights of HA fraction (>100 kDa) restrained the ROS generation and Φ of 3HA* due to surface adsorption between HA and CeO2 NPs blocking reactive sites, competitive absorption for simulated sunlight. Fourier transform infrared and three-dimensional excitation-emission matrix fluorescence spectroscopy confirmed that the carboxylic groups of HA have high complexation capacity with CeO2 NPs. These findings are essential for us to improve the understanding of the impacts of HA on CeO2 NPs under different conditions in natural waters.


Assuntos
Cério , Nanopartículas , Substâncias Húmicas/análise , Peso Molecular
2.
J Environ Manage ; 278(Pt 1): 111561, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33126199

RESUMO

Excessive emissions of nitrogen (N) and phosphorus (P) pollutants are leading to increased eutrophication of water bodies. Biological N and P removal processes have become a research priority in the field of sewage treatment with the aim of improving sewage discharge standards in countries worldwide. Denitrifying P removal processes are more efficient for solving problems related to carbon source competition, sludge age conflict, and high aeration energy consumption compared to traditional biological N and P removal processes, but they are easy to produce nitrous oxide (N2O) in the process of sewage treatment. N2O is a greenhouse gas with a global warming potential approximately 190-270 times that of CO2 and 4-21 times that of CH4, which was produced and released into the environmental in denitrifying P removal systems under conditions of a low C/N ratio, high dissolved oxygen, and low activity of denitrifying phosphorus accumulating organisms (DPAOs). This paper reviews the emission characteristics and influencing factors of N2O during denitrifying P removal processes and proposes appropriate strategies for controlling the emission of N2O. This work serves as a basis for the development of new sewage treatment processes and the reduction of greenhouse gas emissions in future wastewater treatment plants.


Assuntos
Óxido Nitroso , Fósforo , Reatores Biológicos , Desnitrificação , Nitritos , Óxido Nitroso/análise , Esgotos
3.
Environ Res ; 191: 110086, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32846168

RESUMO

The widespread applications of zinc oxide nanoparticles (ZnO NPs) have raised increasing concerns due to their adverse environmental effects. The ubiquitous natural organic matter in natural aqueous environments can interact with ZnO NPs, thereby affecting their aggregation, sedimentation and biotoxicity. Here, we systematically investigated the effects of humic acid (HA) and sodium alginate (SA) on the aggregation behavior of ZnO NPs and their biotoxicity to Daphnia magna. High concentrations (9.0 mg/L) of HA and SA accelerated the aggregation of ZnO NPs with maximum aggregation rates (ΔD/Δt) of 22.1 and 19.2 nm/min, respectively. Both HA and SA led to 31.2% and 30.1% decrease of ZnO NPs concentration compared with the control experiment. The results calculated by Derjaguin-Landau-Verwey-Overbeek theoretical formula were consistent with these of aggregation and sedimentation of ZnO NPs. Furthermore, excitation-emission-matrix fluorescence spectroscopy verified that the carboxylic groups of HA and SA have high complexation capacity with ZnO NPs. Daphnia magna was used to evaluate the biotoxicity of ZnO NPs, and the toxicity of ZnO NPs to Daphnia magna was alleviated as the HA concentration increased from 0 to 1.2 mg/L. Toxicity mitigation experiments confirmed that photocatalytic generation of reactive oxygen species was more toxic to Daphnia magna than dissolved Zn2+ in acute and chronic toxicity tests. Moreover, the attacks of active oxygen free radical damaged the antioxidant system of Daphnia magna. The information obtained will help us to improve the understanding of the impacts of ZnO NPs on freshwater ecosystems.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Poluentes Químicos da Água , Óxido de Zinco , Alginatos/toxicidade , Animais , Daphnia , Ecossistema , Substâncias Húmicas/análise , Nanopartículas Metálicas/toxicidade , Nanopartículas/toxicidade , Poluentes Químicos da Água/toxicidade , Óxido de Zinco/toxicidade
4.
J Environ Manage ; 267: 110656, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32349960

RESUMO

The effects of pH, cation valence, and ionic strength (IS) on the stability and aggregation behavior of zinc oxide nanoparticles (ZnO NPs) were investigated in this study. Results showed that ZnO NPs were most prone to aggregation at the isoelectric point (pH = 8.7), with an aggregation rate (ΔD/Δt) of 30.1. ZnO NPs showed a greater propensity for dissolution at lower pH (pH < 7), and Zn2+ was more rapidly released into the aqueous phase in acidic solutions than neutral or alkaline conditions. The C/C0 of ZnO NPs was about 21.56% and remained stable in acidic solution of pH 4.0. Additionally, slow sedimentation with a C/C0 ratio of 95.0% was observed due to an increase in repulsive interactions between nanoparticles under pH = 10. The effect of cations on the ΔD/Δt of ZnO NPs decreased in strength as follows: Ca2+ > Mg2+ > K+ > Na+. High-valence metal cations (Ca2+, Mg2+) were more competitively adsorbed onto the surface of ZnO NPs with a hydrogen atom due to Coulomb's law, increasing the zeta potential and stabilizing the suspension of ZnO NPs at IS < 10 mM. Furthermore, compression of the electric double layer (EDL) became stronger than electrostatic adsorption with increasing IS, reaching a maximum ΔD/Δt of 23.3 (Ca2+, pH = 7, IS = 1 M). The C/C0 ratio of ZnO NPs decreased from 100% to 56.5% (Na+), 52.2% (K+), 45.2% (Mg2+), and 40.1% (Ca2+) at pH = 7 and an IS of 0.5 M. In addition to the cation valence, the hydration forces and ionic radii of the metal cations might be other factors that affected the interactions of metal cations with ZnO NPs. Finally, the total interaction energy between ZnO NPs was calculated using the Derjaguin-Landau-Verwey-Overbeek (DLVO) theoretical formula, and the calculated results were in agreement with the experimental outcomes under various aquatic environmental conditions.


Assuntos
Nanopartículas , Óxido de Zinco , Cátions , Concentração de Íons de Hidrogênio , Concentração Osmolar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...