Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Sci ; 7(12): 5044-5053, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31552923

RESUMO

One-dimensional hydroxyapatite (HA) particularly mimics the structure of mineralized collagen fibrils and displays superior mechanical properties such as toughness. Herein, we report Se-doped HA/chitosan (Se-HA/CS) biopapers constructed with self-assembled Se-doped HA nanowires and chitosan. The Se-HA/CS biopapers with high flexibility and manufacturability can not only be further processed into arbitrary shapes by folding or using scissors but also display high performances in in vitro/vivo anti-bone tumor studies. The Se-HA/CS biopapers are more inclined to inhibit the growth of tumor cells (HCS 2/8 and SJSA cells) than that of normal human bone marrow stromal cells (hBMSCs). The potential mechanisms of this meaningful anti-tumor effect were investigated, such as reactive oxygen species accumulation and the activation of apoptosis and the underlying signal pathway involved (including caspase family, Bcl-2 family and JNK/STAT3). The results demonstrate that Se-HA/CS biopapers may inhibit the growth of HCS 2/8 and SJSA cells by synchronously inducing JNK activation and STAT3 inhibition and consequently promote the apoptosis of these cells. Furthermore, the in vivo anti-tumor studies confirm that the Se-HA/CS biopapers obviously suppress the growth of patient-derived xenograft tumor models.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/patologia , Durapatita/química , Selênio/química , Selênio/farmacologia , Animais , Linhagem Celular Tumoral , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Nanofios/química , Papel , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Chemistry ; 24(35): 8809-8821, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29655312

RESUMO

Hydroxyapatite nanowires exhibit a great potential in biomedical applications owing to their high specific surface area, high flexibility, excellent mechanical properties, and similarity to mineralized collagen fibrils of natural bone. In this work, zinc-containing nanoparticle-decorated ultralong hydroxyapatite nanowires (Zn-UHANWs) with a hierarchical nanostructure have been synthesized by a one-step solvothermal method. The highly flexible Zn-UHANWs exhibit a hierarchical rough surface and enhanced specific surface area as compared with ultralong hydroxyapatite nanowires (UHANWs). To evaluate the potential application of Zn-UHANWs in bone regeneration, the biomimetic Zn-UHANWs/chitosan (CS) (Zn-UHANWs/CS) composite porous scaffold with 80 wt % Zn-UHANWs was prepared by incorporating Zn-UHANWs into the chitosan matrix by the freeze-drying process. The as-prepared Zn-UHANWs/CS composite porous scaffold exhibits enhanced mechanical properties, highly porous structure, and excellent water retention capacity. In addition, the Zn-UHANWs/CS porous scaffold has a good biodegradability with the sustainable release of Zn, Ca, and P elements in aqueous solution. More importantly, the Zn-UHANWs/CS porous scaffold can promote the osteogenic differentiation of rat bone marrow derived mesenchymal stem cells and facilitate in vivo bone regeneration as compared with the pure CS porous scaffold or UHANWs/CS porous scaffold. Thus, both the Zn-UHANWs and Zn-UHANWs/CS porous scaffold developed in this work are promising for application in bone defect repair.


Assuntos
Regeneração Óssea , Osso e Ossos/metabolismo , Quitosana/química , Durapatita/química , Nanocompostos/química , Nanofios/química , Zinco/química , Adesão Celular , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas , Humanos , Fenômenos Mecânicos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanocompostos/ultraestrutura , Osteogênese , Porosidade , Alicerces Teciduais
3.
RSC Adv ; 8(46): 26218-26229, 2018 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35541968

RESUMO

The synthetic bone grafts that mimic the composition and structure of human natural bone exhibit great potential for application in bone defect repair. In this study, a biomimetic porous nanocomposite consisting of ultralong hydroxyapatite nanowires (UHANWs) and collagen (Col) with 66.7 wt% UHANWs has been prepared by the freeze drying process and subsequent chemical crosslinking. Compared with the pure collagen as a control sample, the biomimetic UHANWs/Col porous nanocomposite exhibits significantly improved mechanical properties. More significantly, the rehydrated UHANWs/Col nanocomposite exhibits an excellent elastic behavior. Moreover, the biomimetic UHANWs/Col porous nanocomposite has a good degradable performance with a sustained release of Ca and P elements, and can promote the adhesion and spreading of mesenchymal stem cells. The in vivo evaluation reveals that the biomimetic UHANWs/Col porous nanocomposite can significantly enhance bone regeneration compared with the pure collagen sample. After 12 weeks implantation, the woven bone and lamellar bone are formed throughout the entire UHANWs/Col porous nanocomposite, and connect directly with the host bone to construct a relatively normal bone marrow cavity, leading to successful osteointegration and bone reconstruction. The as-prepared biomimetic UHANWs/Col porous nanocomposite is promising for applications in various fields such as bone defect repair.

4.
Mater Sci Eng C Mater Biol Appl ; 77: 846-856, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28532101

RESUMO

Human bone mesenchymal stem cells (hBMSCs) have the ability to differentiate into bone and cartilage for clinical bone regeneration. Biomaterials with an innate ability to stimulate osteogenic differentiation of hBMSCs into bone and cartilage are considered attractive candidates for the applications in bone tissue engineering and regeneration. In this paper, we synthesized fructose 1,6-bisphosphate dicalcium (Ca2FBP) porous microspheres by the sonochemical method, and investigated the ability of Ca2FBP for the promotion of the osteogenic differentiation of hBMSCs. After the hBMSCs were co-cultured with the sterilized powder of Ca2FBP porous microspheres for different times, the cell proliferation assay, alkaline phosphatase activity assay, quantitative real-time polymerase chain reaction and western blotting were performed to investigate the bioactivity and osteogenic differentiation performance of the as-prepared product. Compared with hydroxyapatite nanorods, Ca2FBP porous microspheres show a superior bioactivity and osteoinductive potential, and can promote the cell differentiation of hBMSCs in vitro, thus, they are promising for applications in the tissue engineering field such as dental and bone defect repair.


Assuntos
Diferenciação Celular , Células Cultivadas , Frutosedifosfatos , Humanos , Células-Tronco Mesenquimais , Microesferas , Osteogênese
5.
ACS Appl Mater Interfaces ; 9(19): 16435-16447, 2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28481082

RESUMO

Multifunctional biomaterials that simultaneously combine high biocompatibility, biodegradability, and bioactivity are promising for applications in various biomedical fields such as bone defect repair and drug delivery. Herein, the synthesis of hydroxyapatite nanowire@magnesium silicate nanosheets (HANW@MS) core-shell porous hierarchical nanocomposites (nanobrushes) is reported. The morphology of the magnesium silicate (MS) shell can be controlled by simply varying the solvothermal temperature and the amount of Mg2+ ions. Compared with hydroxyapatite nanowires (HANWs), the HANW@MS core-shell porous hierarchical nanobrushes exhibit remarkably increased specific surface area and pore volume, endowing the HANW@MS core-shell porous hierarchical nanobrushes with high-performance drug loading and sustained release. Moreover, the porous scaffold of HANW@MS/chitosan (HANW@MS/CS) is prepared by incorporating the HANW@MS core-shell porous hierarchical nanobrushes into the chitosan (CS) matrix. The HANW@MS/CS porous scaffold not only promotes the attachment and growth of rat bone marrow derived mesenchymal stem cells (rBMSCs), but also induces the expression of osteogenic differentiation related genes and the vascular endothelial growth factor (VEGF) gene of rBMSCs. Furthermore, the HANW@MS/CS porous scaffold can obviously stimulate in vivo bone regeneration, owing to its high bioactive performance on the osteogenic differentiation of rBMSCs and in vivo angiogenesis. Since Ca, Mg, Si, and P elements are essential in human bone tissue, HANW@MS core-shell porous hierarchical nanobrushes with multifunctional properties are expected to be promising for various biomedical applications such as bone defect repair and drug delivery.


Assuntos
Nanofios , Animais , Regeneração Óssea , Durapatita , Humanos , Silicatos de Magnésio , Células-Tronco Mesenquimais , Nanocompostos , Osteogênese , Porosidade , Ratos , Alicerces Teciduais , Fator A de Crescimento do Endotélio Vascular
6.
Int J Nanomedicine ; 12: 2673-2687, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28435251

RESUMO

Hydroxyapatite (HAP; Ca10(PO4)6(OH)2) and whitlockite (WH; Ca18Mg2(HPO4)2(PO4)12) are widely utilized in bone repair because they are the main components of hard tissues such as bones and teeth. In this paper, we synthesized HAP and WH hollow microspheres by using creatine phosphate disodium salt as an organic phosphorus source in aqueous solution through microwave-assisted hydrothermal method. Then, we prepared HAP/chitosan and WH/chitosan composite membranes to evaluate their biocompatibility in vitro and prepared porous HAP/chitosan and WH/chitosan scaffolds by freeze drying to compare their effects on bone regeneration in calvarial defects in a rat model. The experimental results indicated that the WH/chitosan composite membrane had a better biocompatibility, enhancing proliferation and osteogenic differentiation ability of human mesenchymal stem cells than HAP/chitosan. Moreover, the porous WH/chitosan scaffold can significantly promote bone regeneration in calvarial defects, and thus it is more promising for applications in tissue engineering such as calvarial repair compared to porous HAP/chitosan scaffold.


Assuntos
Regeneração Óssea/fisiologia , Crânio , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis , Regeneração Óssea/efeitos dos fármacos , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Diferenciação Celular , Quitosana/química , Quitosana/farmacologia , Durapatita/química , Durapatita/farmacologia , Liofilização , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Microesferas , Osteogênese/efeitos dos fármacos , Porosidade , Ratos , Ratos Sprague-Dawley , Crânio/lesões
7.
Int J Nanomedicine ; 12: 2293-2306, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28392688

RESUMO

Biomaterials with high osteogenic activity are desirable for sufficient healing of bone defects resulting from trauma, tumor, infection, and congenital abnormalities. Synthetic materials mimicking the structure and composition of human trabecular bone are of considerable potential in bone augmentation. In the present study, a zinc (Zn)-doped mesoporous hydroxyapatite microspheres (Zn-MHMs)/collagen scaffold (Zn-MHMs/Coll) was developed through a lyophilization fabrication process and designed to mimic the trabecular bone. The Zn-MHMs were synthesized through a microwave-hydrothermal method by using creatine phosphate as an organic phosphorus source. Zn-MHMs that consist of hydroxyapatite nanosheets showed relatively uniform spherical morphology, mesoporous hollow structure, high specific surface area, and homogeneous Zn distribution. They were additionally investigated as a drug nanocarrier, which was efficient in drug delivery and presented a pH-responsive drug release behavior. Furthermore, they were incorporated into the collagen matrix to construct a biomimetic scaffold optimized for bone tissue regeneration. The Zn-MHMs/Coll scaffolds showed an interconnected pore structure in the range of 100-300 µm and a sustained release of Zn ions. More importantly, the Zn-MHMs/Coll scaffolds could enhance the osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells. Finally, the bone defect repair results of critical-sized femoral condyle defect rat model demonstrated that the Zn-MHMs/Coll scaffolds could enhance bone regeneration compared with the Coll or MHMs/Coll scaffolds. The results suggest that the biomimetic Zn-MHMs/Coll scaffolds may be of enormous potential in bone repair and regeneration.


Assuntos
Regeneração Óssea , Durapatita/química , Alicerces Teciduais/química , Zinco/química , Animais , Materiais Biocompatíveis/química , Materiais Biomiméticos , Biomimética , Regeneração Óssea/fisiologia , Osso e Ossos , Diferenciação Celular , Colágeno/química , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Microesferas , Osteogênese , Ratos Sprague-Dawley , Zinco/farmacocinética
8.
ACS Appl Mater Interfaces ; 9(12): 11045-11053, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28294595

RESUMO

Layered materials with open interlayer channels enable various applications such as tissue engineering, ionic and molecular sieving, and electrochemical devices. However, most reports focus on the two-dimensional nanosheets-assembled layered materials, whose interlayer spacing is limited at the nanometer scale. Herein, we demonstrate that one-dimensional inorganic nanowires are the ideal building blocks for the construction of layered materials with open interlayer channels as well, which has not aroused much attention before. It is found that the relatively long inorganic nanowires are capable of assembling into free-standing layered paper with open interlayer channels during the filtration process. The spacings of interlayer channels between adjacent layers are up to tens of micrometers, which are much larger than those of the two-dimensional nanosheets-assembled layered materials. But the closed interlayer channels are observed when the relatively short inorganic nanowires are used as building blocks. The mechanism based on the relationship between the structural variation and the nanowires used is proposed, including the surface charge amplified effect, surface charge superimposed effect, and pillarlike supporting effect. According to the proposed mechanism, we have successfully fabricated a series of layered paper sheets whose architectures (including interlayer channels of cross section and pores on the surface) show gradient changes. The as-prepared layered paper sheets are employed as the valves for controlling water transportation. Tunable water transportation is achieved by the synergistic effect between in-plane interlayer channels (horizontal transportation) from the open to the closed states, and through-layer pores (vertical transportation) without surface modification or intercalation of any guest species.

9.
Sci Rep ; 7: 44129, 2017 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-28287178

RESUMO

Biomaterials with both excellent osteogenic and angiogenic activities are desirable to repair massive bone defects. In this study, simvastatin with both osteogenic and angiogenic activities was incorporated into the mesoporous hydroxyapatite microspheres (MHMs) synthesized through a microwave-assisted hydrothermal method using fructose 1,6-bisphosphate trisodium salt (FBP) as an organic phosphorous source. The effects of the simvastatin-loaded MHMs (S-MHMs) on the osteogenic differentiation of rat bone marrow mesenchymal stem cells (rBMSCs) and angiogenesis in EA.hy926 cells were investigated. The results showed that the S-MHMs not only enhanced the expression of osteogenic markers in rBMSCs but also promoted the migration and tube formation of EA.hy926 cells. Furthermore, the S-MHMs were incorporated into collagen matrix to construct a novel S-MHMs/collagen composite scaffold. With the aid of MHMs, the water-insoluble simvastatin was homogenously incorporated into the hydrophilic collagen matrix and presented a sustained release profile. In vivo experiments showed that the S-MHMs/collagen scaffolds enhanced the bone regeneration and neovascularization simultaneously. These results demonstrated that the water-insoluble simvastatin could be incorporated into the MHMs and maintained its biological activities, more importantly, the S-MHMs/collagen scaffolds fabricated in this study are of immense potential in bone defect repair by enhancing osteogenesis and angiogenesis simultaneously.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Durapatita , Células-Tronco Mesenquimais/metabolismo , Microesferas , Osteogênese/efeitos dos fármacos , Sinvastatina , Animais , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Durapatita/química , Durapatita/farmacocinética , Durapatita/farmacologia , Células-Tronco Mesenquimais/patologia , Porosidade , Ratos , Ratos Sprague-Dawley , Sinvastatina/química , Sinvastatina/farmacocinética , Sinvastatina/farmacologia
10.
J Colloid Interface Sci ; 497: 266-275, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28288372

RESUMO

Hydrogels with 3-dimentional cross-linked structures are widely used in various biomedical fields such as bone repair scaffolds, drug carriers and biosensors. However, the applications of hydrogels are usually restricted because of their poor mechanical properties. Currently, nanocomposites, double network systems, hydrophobic association, macromolecules, and nanoparticles are commonly adopted as cross-linking agents to enhance mechanical properties of hydrogels. In this work, ultralong hydroxyapatite nanowires (HANWs) with lengths of several hundred microns are prepared and used to enhance the mechanical properties of sodium alginate (SA)-based hydrogels. Using divalent calcium ions as the cross-linking agent, the hybrid HANWs/SA hydrogels containing various percentages of HANWs are obtained. The as-prepared HANWs/SA hybrid hydrogels have a porous structure with pore sizes ranging from about 200 to 500µm. The mechanical properties of SA hydrogels can be significantly improved by incorporating HANWs. The maximum compressive modulus (E50%) and tensile Young's modulus of the hybrid hydrogel (HANWs/SA=2:1) are as high as 0.123MPa and 0.994MPa, which are about 162% and 614% those of the pure SA hydrogel, respectively. Due to the enhanced mechanical properties and high biocompatibility, the as-prepared HANWs/SA hybrid hydrogels have promising applications in various biomedical fields such as bone defect repair.


Assuntos
Alginatos/química , Durapatita/química , Hidrogéis/química , Hidrogéis/síntese química , Nanofios/química , Ácido Glucurônico/química , Ácidos Hexurônicos/química
11.
ACS Appl Mater Interfaces ; 9(9): 7918-7928, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28240537

RESUMO

In the past decade, ultralight materials such as aerogels have become one of the hottest research topics owing to their unique properties. However, most reported ultralight materials are bioinert. In this work, by using biocompatible, monodisperse, single-crystalline hydroxyapatite (HAP) microtubes as the building blocks, ultralight, strong, highly porous, three-dimensional (3-D) HAP networks have been successfully fabricated through a facile freeze-drying method and subsequent sintering at 1300 °C for 2 h. The as-prepared ultralight, strong, highly porous 3-D HAP microtube networks exhibit superior properties, such as ultrahigh porosity (89% to 96%), low density (94.1 to 347.1 mg/cm3), high compressive strength that can withstand more than 6400 times of their own weight without any fracture and is higher than aerogels with similar densities, and ultralow thermal conductivity (0.05 W/mK). Owing to their high porosity, ultralight, and good mechanical properties and high biocompatibility, the HAP microtube networks reported herein are promising for applications in various fields.

12.
Biomaterials ; 121: 1-14, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28063979

RESUMO

Biocompatibility, biodegradability and bioactivity are significantly important in practical applications of various biomaterials for bone tissue engineering. Herein, we develop a functional inorganic-organic hybrid system of calcium phosphate-phosphorylated adenosine (CPPA). Both calcium phosphate and phosphorylated adenosine molecules in CPPA are fundamental components in mammalians and play important roles in biological metabolism. In this work, we report our three leading research qualities: (1) CPPA hybrid microspheres with hollow and porous structure are synthesized by a facile one-step microwave-assisted solvothermal method; (2) CPPA hybrid microspheres show high doxorubicin loading capacity and pH-responsive drug release properties, and demonstrate positive therapeutic effects on six osteosarcoma cell lines in vitro and a mouse model of 143B osteosarcoma subcutaneous tumor in vivo; (3) CPPA hybrid microspheres are favorable to promote osteogenic differentiation of human bone mesenchymal stem cells (hBMSCs) by activating the AMPK pathway, with satisfactory evidences from cellular alkaline phosphatase staining, alizarin red staining, real time PCR and western analysis. The as-prepared CPPA hybrid microspheres are promising in anti-osteosarcoma and bone regeneration, which simultaneously display excellent properties on drug delivery and osteogenic differentiation of hBMSCs.


Assuntos
Adenosina/administração & dosagem , Fosfatos de Cálcio/administração & dosagem , Cápsulas/síntese química , Doxorrubicina/administração & dosagem , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteossarcoma/tratamento farmacológico , Implantes Absorvíveis , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/química , Antineoplásicos/administração & dosagem , Cápsulas/administração & dosagem , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Doxorrubicina/química , Feminino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Osteoblastos/citologia , Osteoblastos/fisiologia , Osteogênese/efeitos dos fármacos , Osteogênese/fisiologia , Osteossarcoma/patologia , Fosforilação , Porosidade , Resultado do Tratamento
13.
ACS Appl Mater Interfaces ; 9(4): 3306-3317, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28068758

RESUMO

Nanostructured calcium phosphate porous microspheres are of great potential in drug delivery and bone regeneration due to their large specific surface area, biocompatibility, and similarity to inorganic component of osseous tissue. In this work, strontium (Sr)-doped amorphous calcium phosphate porous microspheres (SrAPMs) were synthesized through a microwave-hydrothermal method using fructose 1,6-bisphosphate trisodium salt as the source of phosphate ions. The SrAPMs showed a mesoporous structure and a relatively high specific area. Compared with the hydroxyapatite nanorods prepared by using Na2HPO4·12H2O as the phosphorus source, the SrAPMs with a higher specific surface area were more effective in drug loading using vancomycin as the antiobiotics of choice and consequently having a higher antibacterial efficiency both on agar plates and in broths. Furthermore, to assess the potential application of SrAPMs in bone defect repair, a novel biomimetic bone tissue-engineering scaffold consisting of collagen (Coll) and SrAPMs was constructed using a freeze-drying fabrication process. Incorporation of the SrAPMs not only improved the mechanical properties, but also enhanced the osteogenesis of rat bone marrow mesenchymal stem cells. The in vivo experiments demonstrated that the SrAPMs/Coll scaffolds remarkably enhanced new bone formation compared with the Coll and APMs/Coll scaffolds in a rat critical-sized calvarial defect model at 8 weeks postimplantation. In summary, SrAPMs developed in this work are promising as antibiotic carriers and may encourage bone formation when combined with collagen.


Assuntos
Micro-Ondas , Animais , Regeneração Óssea , Fosfatos de Cálcio , Frutose , Frutosedifosfatos , Microesferas , Fósforo , Ratos , Estrôncio , Alicerces Teciduais
14.
Chem Asian J ; 12(6): 655-664, 2017 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-28133927

RESUMO

Highly flexible hydroxyapatite/collagen (HAP/Col) composite membranes are regarded to be significant for guided bone regeneration application owing to their similar chemical composition to that of natural bone, excellent bioactivity and good osteoconductivity. However, the mechanical strength of the HAP/Col composite membranes is usually weak, which leads to difficult surgical operations and low mechanical stability during the bone healing process. Herein, highly flexible ultralong hydroxyapatite nanowires/collagen (UHANWs/Col) composite biopaper sheets with weight fractions of UHANWs ranging from 0 to 100 % are facilely synthesized. The UHANWs are able to weave with each other to construct a three-dimensional fabric structure in the collagen matrix, providing a strong interaction between UHANWs and an intermolecular force between UHANWs and the collagen matrix. The as-prepared UHANWs/Col composite biopaper exhibits improved mechanical properties and high flexibility. More importantly, the as-prepared highly flexible 70 wt % UHANWs/Col composite biopaper exhibits an excellent cytocompatibility and outstanding cellular attachment performance as compared with the pure collagen and 70 wt % HAP nanorods/Col membranes. In consideration of its superior mechanical properties and outstanding cellular attachment performance, the as-prepared UHANWs/Col composite biopaper is promising for applications in various biomedical fields such as guided bone regeneration.

15.
J Mater Chem B ; 5(5): 1039-1052, 2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32263882

RESUMO

The development of multifunctional biomaterials with drug delivery ability, and pro-osteogenic and pro-angiogenic activities has garnered increasing interest in the field of regenerative medicine. In the present study, hypoxia-mimicking copper (Cu)-doped mesoporous hydroxyapatite (HAP) microspheres (Cu-MHMs) were successfully synthesized through a microwave-hydrothermal method by using creatine phosphate as an organic phosphorus source. The Cu-MHMs doped with 0.2, 0.5 and 1 mol% Cu were prepared. The Cu-MHMs consisting of HAP nanorods or nanosheets exhibited a hierarchically mesoporous hollow structure and a high specific surface area. Then the Cu-MHMs were investigated as a drug nanocarrier using doxorubicin hydrochloride (DOX) as a model drug. The Cu-MHMs showed a relatively high drug-loading capacity and a pH-responsive drug release behavior. Furthermore, the Cu-MHMs were incorporated into a chitosan (CS) matrix to construct a biomimetic scaffold optimized for bone regeneration. The Cu-MHM/CS composite scaffolds maintained high degrees of porosity and showed a sustained release of Cu ions. More importantly, the Cu-MHM/CS scaffolds not only enhanced the osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells (rBMSCs) but also promoted the migration and tube formation of EA.hy926 cells. When implanted in rat critical-sized calvarial defects, the Cu-MHM/CS scaffolds significantly enhanced bone regeneration accompanied by more new blood vessel formation at 8 weeks post-operation compared with the MHM/CS scaffolds. These results suggest that the hypoxia-mimicking Cu-MHM/CS scaffolds could encourage bone regeneration by enhancing osteogenesis and angiogenesis simultaneously, which bodes well for the reconstruction of vascularized tissue-engineered bone.

16.
J Mater Chem B ; 5(21): 3898-3906, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32264251

RESUMO

In this work, a novel ultralong hydroxyapatite microtube (HMT)-chitosan (CHS) composite scaffold has been successfully prepared. The mechanical properties of the HMT-CHS composite scaffold is greatly improved compared with the CHS-hydroxyapatite nanorod scaffold and the pure chitosan scaffold. By using gentamicin sulfate (GS) as the model drug, the GS-loaded HMT-CHS composite scaffold has a high drug loading capacity, sustained drug release behavior and high antibacterial activity. The as-prepared HMT-CHS composite scaffold has promising applications in various fields such as drug delivery and bone defect repair.

17.
Chemistry ; 23(14): 3328-3337, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-27862430

RESUMO

The templated synthesis of hydroxyapatite (HAP) nanowires@metal-organic framework (MOF) core/shell nanofibers (named HAP@MIL-100(Fe) nanofibers) is demonstrated. The ultralong hydroxyapatite nanowires are adopted as a hard template for the nucleation and growth of MIL-100(Fe) (a typical MOF) through the layer-by-layer method. The Coulombic and chelation interactions between Ca2+ ions on the surface of the HAP nanowires and the COO- organic linkers of MIL-100(Fe) play key roles in the formation process. The as-prepared, water-stable HAP@MIL-100(Fe) nanofibers exhibit peroxidase-like activity toward the oxidation of different peroxidase substrates in the presence of H2 O2 , accompanied by a clear color change of the solution. Furthermore, a flexible, recyclable HAP@MIL-100(Fe) test paper is prepared successfully by using HAP@MIL-100(Fe) nanofibers as building blocks. A simple, low-cost, and sensitive colorimetric method for the detection of H2 O2 and glucose is established based on the as-prepared, flexible, recyclable HAP@MIL-100(Fe) test paper. More importantly, the HAP@MIL-100(Fe) test paper can be recovered easily for reuse by simply dipping in absolute ethanol for just 30 min, thus showing excellent recyclability. With its combination of advantages such as easy transportation, easy storage and use, rapid recyclability, light weight, and high flexibility, this HAP@MIL-100(Fe) test paper is promising for wide applications in various fields.


Assuntos
Durapatita/química , Estruturas Metalorgânicas/química , Nanofibras/química , Nanofios/química , Peroxidase/química , Ácido Ascórbico/análise , Bioensaio/métodos , Cálcio/química , Glucose/análise , Peróxido de Hidrogênio/análise , Oxirredução , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Propriedades de Superfície , Termogravimetria/métodos , Água/química
18.
Chemistry ; 23(16): 3850-3862, 2017 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-27935655

RESUMO

Highly flexible multifunctional biopaper comprising ultralong hydroxyapatite nanowires and chitosan (UHANWs/CS), with high weight fractions of ultralong hydroxyapatite nanowires (UHANWs) up to 100 wt. %, is reported. The as-prepared UHANWs/CS composite biopaper has high flexibility and superior mechanical properties even when the weight fraction of UHANWs is as high as 90 wt. %. In contrast, the control samples consisting of hydroxyapatite nanorods and chitosan (HANRs/CS) with weight fractions of HANRs higher than 66.7 wt.% cannot be obtained in the form of the flexible membrane. The ultimate tensile strength and Young's modulus of the UHANWs/CS composite biopaper are about 3.2 times and 4.3 times those of the HANRs/CS membrane with the same weight fraction of HAP, respectively. In addition, the UHANWs/CS composite biopaper (90 wt. % UHANWs) can be used for color printing using a commercial ink-jet printer. The surface wettability, swelling ratio, and water vapor transmission rate of the UHANWs/CS composite biopaper are adjustable by changing the addition amount of UHANWs. In vitro experiments indicate that the UHANWs/CS composite biopaper has good degradability, high acellular bioactivity and high biocompatibility. The as-prepared UHANWs/CS composite biopaper is therefore promising for various biomedical applications such as wound dressing, bone-fracture fixation, and bone-defect repair.

19.
ACS Appl Mater Interfaces ; 8(50): 34715-34724, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-27998140

RESUMO

Traditional paper made from plant cellulose fibers is easily destroyed by either liquid or fire. In addition, the paper making industry consumes a large amount of natural trees and thus causes serious environmental problems including excessive deforestation and pollution. In consideration of the intrinsic flammability of organics and minimizing the effects on the environment and creatures, biocompatible ultralong hydroxyapatite nanowires are an ideal building material for inorganic fire-resistant paper. Herein, a new kind of free-standing, highly flexible, superhydrophobic, and fire-resistant layered inorganic paper has been successfully prepared using ultralong hydroxyapatite nanowires as building blocks after the surface modification with sodium oleate. During the vacuum filtration, ultralong hydroxyapatite nanowires assemble into self-roughened setalike microfibers, avoiding the tedious fabrication process to construct the hierarchical structure; the self-roughened microfibers further form the inorganic paper with a nacrelike layered structure. We have demonstrated that the layered structure can significantly improve the resistance to mechanical destruction of the as-prepared superhydrophobic paper. The as-prepared superhydrophobic and fire-resistant inorganic paper shows excellent nonflammability, liquid repellency to various commercial drinks, high thermal stability, and self-cleaning property. Moreover, we have explored the potential applications of the superhydrophobic and fire-resistant inorganic paper as a highly effective adsorbent for oil/water separation, fire-shielding protector, and writing paper.

20.
Chemistry ; 22(32): 11224-31, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27347666

RESUMO

A highly flexible and free-standing paper with high antibacterial activity made from silver nanoparticle (AgNP)-decorated ultralong hydroxyapatite nanowires (HAPNWs) is reported. The HAPNWs@AgNPs nanocomposites were obtained from a facile one-step solvothermal process and utilized for the construction of highly flexible and free-standing inorganic paper through a simple vacuum-filtration procedure. The structure and properties of the HAPNWs@AgNPs paper were characterized in detail. Scanning electron microscope (SEM) and transmission electron microscope (TEM) micrographs show that AgNPs are highly dispersed and stabilized in the nanocomposite and exhibit a narrow particle size distribution. The effects of the concentration of silver nitrate, solvothermal temperature and time on the product were systematically investigated. This method is simple, convenient and reproducible. The as-prepared HAPNWs@AgNPs paper shows long-time sustained silver-ion release, high antibacterial activity against both Gram-negative and Gram-positive bacteria, and good biocompatibility. Overall, this work provides a novel pathway for the preparation of a new type of highly flexible, free-standing and antibacterial inorganic paper made from silver nanoparticle-decorated hydroxyapatite nanowires for various applications, as a promising functional biomaterial.


Assuntos
Antibacterianos/síntese química , Durapatita/química , Durapatita/síntese química , Nanopartículas Metálicas/química , Nanocompostos/química , Nanofios/química , Prata/química , Antibacterianos/química , Bactérias Gram-Positivas , Microscopia Eletrônica de Transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...