Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37447846

RESUMO

In the process of the modulation recognition of underwater acoustic communication signals, the multipath effect seriously interferes with the signal characteristics, reducing modulation recognition accuracy. The existing methods passively improve the accuracy from the perspective of selecting appropriate signal features, lacking specialized preprocessing for suppressing multipath effects. So, the accuracy improvement of the designed modulation recognition models is limited, and the adaptability to environmental changes is poor. The method proposed in this paper actively utilizes common synchronous signals in underwater acoustic communication as detection signals to achieve passive time reversal without external signals and designs a passive time reversal-autoencoder to suppress multipath effects, enhance signals' features, and improve modulation recognition accuracy and environmental adaptability. Firstly, synchronous signals are identified and estimated. Subsequently, a passive time reversal-autoencoder is designed to enhance power spectrum and square spectrum features. Finally, a modulation classification is performed using a convolutional neural network. The model is trained in simulation channels generated by Bellhop and tested in actual channels which are different from the training period. The average recognition accuracy of the six modulated signals is improved by 10% compared to existing passive modulation recognition methods, indicating good environmental adaptability as well.


Assuntos
Acústica , Comunicação , Simulação por Computador , Redes Neurais de Computação , Reconhecimento Psicológico
2.
Sensors (Basel) ; 23(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37050568

RESUMO

To estimate the direction of arrival (DOA) of a linear frequency modulation (LFM) signal in a low signal-to-noise ratio (SNR) hydroacoustic environment by a small aperture array, a novel deconvolved beamforming method based on fractional Fourier domain delay-and-sum beamforming (FrFB) was proposed. Fractional Fourier transform (FrFT) was used to convert the received signal into the fractional Fourier domain, and delay-and-sum beamforming was subsequently performed. Noise resistance was acquired by focusing the energy of the LFM signal distributed in the time-frequency domain. Then, according to the convolution structure of the FrFB complex output, the influence of the fractional Fourier domain complex beam pattern was removed by deconvolution, and the target spatial distribution was restored. Therefore, an improved spatial resolution of DOA estimation was obtained without increasing the array aperture. The simulation and experimental results show that, with a small aperture array at low SNR, the proposed method possesses higher spatial resolution than FrFB and frequency-domain deconvolved conventional beamforming.

3.
Appl Opt ; 61(13): 3819-3826, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36256425

RESUMO

With the development of laser metrology, the dual-comb system has natural superiority in the measuring fields. Specifically, distance and velocity represent a basic state for the target in space. We propose an application mode of the dual-comb interferometry integrated into the field programmable gate array. A high-speed parallel processor truly gives full play to the benefit of the data processing rate. The algorithm of the peak extraction and the address matching also bring an efficient working mode into the whole scheme. To verify the performance of this system, we devise a series of experiments for distance and velocity, respectively. The data processing rate of the distance is 425 Hz and that of the corresponding average velocity is 0.425 Hz, which is flexible for different measuring conditions. The experimental results show that the difference can be well within 252.8 µm at 5 m range and 284.9 µm/s over 0.5 m/s.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...