Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Biology (Basel) ; 13(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38927288

RESUMO

Paraphoma chrysanthemicola, an endophytic fungus isolated from the roots of Codonopsis pilosula, influences salicylic acid (SA) levels. The interaction mechanism between SA and P. chrysanthemicola within C. pilosula remains elusive. To elucidate this, an experiment was conducted with four treatments: sterile water (CK), P. chrysanthemicola (FG), SA, and a combination of P. chrysanthemicola with salicylic acid (FG+SA). Results indicated that P. chrysanthemicola enhanced plant growth and counteracted the growth inhibition caused by exogenous SA. Physiological analysis showed that P. chrysanthemicola reduced carbohydrate content and enzymatic activity in C. pilosula without affecting total chlorophyll concentration and attenuated the increase in these parameters induced by exogenous SA. Secondary metabolite profiling showed a decrease in soluble proteins and lobetyolin levels in the FG group, whereas SA treatment led to an increase. Both P. chrysanthemicola and SA treatments decreased antioxidase-like activity. Notably, the FG group exhibited higher nitric oxide (NO) levels, and the SA group exhibited higher hydrogen peroxide (H2O2) levels in the stems. This study elucidated the intricate context of the symbiotic dynamics between the plant species P. chrysanthemicola and C. pilosula, where an antagonistic interaction involving salicylic acid was prominently observed. This antagonism was observed in the equilibrium between carbohydrate metabolism and secondary metabolism. This equilibrium had the potential to engage reactive oxygen species (ROS) and nitric oxide (NO).

2.
Org Lett ; 26(24): 5215-5219, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38861677

RESUMO

Bacterial nonulosonic acids (NulOs), which feature a nine-carbon backbone, are associated with the biological functions of bacterial glycans. Here, an orthogonally protected 5-amino-7-azido-3,5,7,9-tetradeoxy-d-glycero-l-gluco-2-nonulosonic acid related to Fusobacterium nucleatum ATCC 23726 NulO was synthesized from N-acetylneuraminic acid with sequential performance of C5,7 azidation, C9 deoxygenation, C4 epimerization, and N5,7 differentiation. The C5 azido group in the obtained 5,7-diazido-NulO can be regioselectively reduced to differentiate the two amino groups.


Assuntos
Ácido N-Acetilneuramínico , Açúcares Ácidos , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/síntese química , Estrutura Molecular , Açúcares Ácidos/química , Açúcares Ácidos/síntese química , Fusobacterium nucleatum/química , Azidas/química
3.
Sci Total Environ ; 942: 173691, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38844239

RESUMO

Anthropogenic activities exhibit intricate and significant relationships with atmospheric CO2 concentration. Dissecting the spatiotemporal patterns and potential drivers of their coupling coordination relationships from geospatial and temporal perspectives contributes to the benign coordinating development between the two. The coupling coordination degree (D) and types, and their potential influencing factors in China were explored using a coupling coordination model, emerging hotspot analysis, and Multiscale Geographically Weighted Regression model. Results revealed D was dominated by basic coordination in China with notable spatial disparities. Generally, D exhibited higher values in the eastern regions and lower values in the western regions divided by the Hu Line. Furthermore, Central and East China exhibited lower coordination degrees compared to other eastern regions. A total of 15 spatiotemporal dynamic patterns were identified across China. Hot spot patterns were concentrated in the eastern regions of the Hu Line, while cold spots were mainly observed in the western regions. The coupling coordination types exhibited a distinct pattern of "coordination in the east and incoherence in the west, divided by the Hu Line". Over time, there was a shift from lower-level to more benign coordinated types. Additionally, the D and coupling coordination types demonstrated significant spatial agglomeration characteristics, and intercity alliances and enhanced collaborations are essential for sustaining low-carbon improvements. The mechanisms and intensities of various factors on D exhibited spatiotemporal differences. The key drivers influencing coupling coordination types varied depending on the specific type. Additionally, the scales of these drivers affecting D changed over time. It is essential to consider natural and meteorological factors and their scaling effects when developing policies to enhance coupling coordination level. These results have significant implications for assessing the relationship between atmospheric CO2 and human activities and provide guidance for implementing effective low-carbon development policies.

4.
Bioorg Chem ; 150: 107560, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38878752

RESUMO

Leveraging the elevated hydrogen peroxide (H2O2) levels in cancer cells, H2O2-activated prodrugs have emerged as promising candidates for anticancer therapy. Notably, the efficacy of these prodrugs is influenced by the varying H2O2 levels across different cancer cell types. In this context, we have developed a novel H2O2-activated prodrug, PBE-AMF, which incorporates a phenylboronic ester (PBE) motif. Upon H2O2 exposure, PBE-AMF liberates the fluorescent and cytotoxic molecule amonafide (AMF), functioning as a theranostic agent. Our studies with PBE-AMF have demonstrated a positive correlation between intracellular H2O2 concentration and anticancer activity. The breast cancer cell line MDA-MB-231, characterized by high H2O2 content, showed the greatest susceptibility to this prodrug. Subsequently, we replaced the PBE structure with phenylboronic acid (PBA) to obtain the prodrug PBA-AMF, which exhibited enhanced stability, aqueous solubility, and tumor cell selectivity. This selectivity is attributed to its affinity for sialic acid, which is overexpressed on the surfaces of cancer cells. In vitro assays confirmed that PBA-AMF potently and selectively inhibited the proliferation of MDA-MB-231 cells, while sparing non-cancerous MCF-10A cells. Mechanistic investigations indicated that PBA-AMF impedes tumor proliferation by inhibiting DNA synthesis, reducing ATP levels, inducing apoptosis, and arresting the cell cycle. Our work broadens the range of small molecule H2O2-activated anticancer theranostic prodrugs, which are currently limited in number. We anticipate that the applications of PBA-AMF will extend to a wider spectrum of tumors and other diseases associated with increased H2O2 levels, thereby offering new horizons in cancer diagnostics and treatment.

5.
Dalton Trans ; 53(26): 10982-10990, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38874222

RESUMO

Two lanthanide complexes with formulae [DyIII(LN5)(pentafluoro-PhO)3] (1) and [DyIII(LN5)(2,6-difluoro-PhO)2](BPh4) (2) (LN5 = 2,14-dimethyl-3,6,10,13,19-pentaazabicyclo[13.3.1]nonadecal (19),2,13,15,17-pentaene) were structurally and magnetically characterized. DyIII ions lie in the cavity of a five coordinate nitrogen macrocycle, and in combination with the introduction of multi-fluorinated monodentate phenoxyl coligands a high axiality coordination symmetry is built. Using the pentafluorophenol co-ligand, complex 1 with a D2d coordination environment, is obtained and displays moderate single-molecule magnets (SMMs) behavior. When difluorophenol co-ligands were used, a higher local axisymmetric pentagonal bipyramidal coordination geometry was observed in complex 2, which displays apparent slow magnetic relaxation behavior with a hysteresis temperature of up to 5 K. Further magnetic studies of diluted samples combined with ab initio calculations indicate that the high axiality plays a crucial role in suppressing quantum tunneling of magnetization (QTM) and consequently results in good slow magnetic relaxation behavior. Different fluoro-substituted phenoxyl co-ligands have phenoloxy oxygen atoms with different electrostatic potentials as well as a different number of phenoloxy coligands along the magnetic axis, resulting in different ligand field strengths and coordination symmetries.

6.
Inorg Chem ; 63(24): 11347-11353, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38813991

RESUMO

Two lanthanide 3D coordination polymers [Ln2(L)4Cl2(H2O)4]n (Ln = Eu (1), Gd (2)) with quinoline-2-carboxylic acid (HL) as the ligand were successfully synthesized and characterized. Complex 1 exhibits a highly sensitive and selective luminescent response to 2,6-dipicolinic acid (DPA) in tap water and is virtually unaffected by interferences such as amino acids, aromatic carboxylic acids, and ions. With the addition of DPA, the luminescence intensity of complex 1 decreases rapidly to the naked eye. The detection limit of 1 toward DPA is 3.36 µM, which is much less than the infectious dose (60 µM) of the anthrax spores, indicating the high sensitivity of 1 to DPA. This study offers a basis for employing lanthanide complexes in real sample analysis, enabling direct and efficient detection of DPA with high sensitivity and specificity. Additionally, it is noteworthy that at a magnetic field strength of 7 T and a temperature of 3 K, the maximum entropy change for complex 2 attains a value of 23.56 J kg-1 K-1.

7.
Org Lett ; 26(19): 4142-4146, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38717147

RESUMO

Fusobacterium nucleatum, a colorectal-cancer-associated oncomicrobe, can trigger or accelerate numerous pathologies. We report the first synthesis of a conjugation-ready disaccharide containing six amino groups from F. nucleatum ATCC 23726 O-antigen. Rare 2,3-diamido-d-glucuronic acid amide and 2-acetamido-4-amino-d-fucose were synthesized from d-glucosamine through configuration inversion, nucleophilic substitution, C6 oxidation, and C6 deoxygenation. A judicious choice of protecting groups and reaction conditions enabled the selective installation of N-acetyl, N-propanoyl, N-formyl, and carboxamido groups.


Assuntos
Fusobacterium nucleatum , Antígenos O , Fusobacterium nucleatum/química , Antígenos O/química , Estrutura Molecular , Dissacarídeos/química , Dissacarídeos/síntese química
8.
ACS Biomater Sci Eng ; 10(5): 2805-2826, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38621173

RESUMO

Tissue engineering involves implanting grafts into damaged tissue sites to guide and stimulate the formation of new tissue, which is an important strategy in the field of tissue defect treatment. Scaffolds prepared in vitro meet this requirement and are able to provide a biochemical microenvironment for cell growth, adhesion, and tissue formation. Scaffolds made of piezoelectric materials can apply electrical stimulation to the tissue without an external power source, speeding up the tissue repair process. Among piezoelectric polymers, poly(vinylidene fluoride) (PVDF) and its copolymers have the largest piezoelectric coefficients and are widely used in biomedical fields, including implanted sensors, drug delivery, and tissue repair. This paper provides a comprehensive overview of PVDF and its copolymers and fillers for manufacturing scaffolds as well as the roles in improving piezoelectric output, bioactivity, and mechanical properties. Then, common fabrication methods are outlined such as 3D printing, electrospinning, solvent casting, and phase separation. In addition, the applications and mechanisms of scaffold-based PVDF in tissue engineering are introduced, such as bone, nerve, muscle, skin, and blood vessel. Finally, challenges, perspectives, and strategies of scaffold-based PVDF and its copolymers in the future are discussed.


Assuntos
Polivinil , Engenharia Tecidual , Alicerces Teciduais , Polivinil/química , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Humanos , Impressão Tridimensional , Materiais Biocompatíveis/química , Polímeros/química , Animais , Polímeros de Fluorcarboneto
9.
ACS Omega ; 9(10): 11883-11894, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38496991

RESUMO

Copper-based compounds have attracted increasing attention as electrode materials for rechargeable devices, but their poor conductivity and insufficient stability inhibit their further development. Herein, an effective method has been proposed to improve the electrochemical properties of the copper-based electrodes by coating carbon materials and generating unique micro/nanostructures. The prepared Cu2S/Cu7S4/NC with hierarchical hollow structure possesses excellent electrochemical performance, attributing to the composition and structure optimization. The superior charge storage performance has been assessed by theoretical and experimental research. Specifically, the Cu2S/Cu7S4/NC exhibits remarkably higher electrical conductivity and lower adsorption-free energy for O* and OH* than those of Cu2O. Moreover, the Cu2S/Cu7S4/NC delivers a high specific capacitance of 1261.3 F·g-1 at the current density of 1 A·g-1 and also has great rate performance at higher current densities, which are much better than those of the Cu2O nanocubes. In addition, the assembled hybrid supercapacitor using Cu2S/Cu7S4/NC as the anode exhibits great energy density, power density, and cycling stability. This study has proposed a novel and feasible method for the synthesis of high-performance copper-based electrodes and their electrochemical performance regulation, which is of great significance for the advancement of high-quality electrode materials and rechargeable devices.

10.
Environ Sci Pollut Res Int ; 31(14): 22038-22054, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38400969

RESUMO

A comprehensive understanding of the terrestrial carbon sink is essential for proficient regional carbon management. However, previous studies predominantly relied on net ecosystem productivity (NEP) as an indicator of regional carbon sink, overlooking the impacts of carbon emissions from physical processes and carbon leakage associated with anthropogenic activities. In this study, net region productivity (NRP), a vital metric representing carbon sink dynamics in regional multi-landscape ecosystems, was employed to systematically analyze the patterns, trends, and causes of carbon sink in Ordos. The results revealed that spatially averaged NRP in Ordos was 70.334 g·m-2·a-1, indicating a carbon sink effect. The coefficient of variation of NRP was 68.035%, with a higher NRP in the southern region. Normalized difference vegetation index (NDVI) predominantly controlled the spatial heterogeneity of NRP in Ordos, while precipitation emerged as the primary climatic factor influencing spatial differences in NRP. Regional variations in the impact of environmental factors on NRP were evident. In most areas, NRP showed a notable increasing trend influenced by various factors. Specifically, the simultaneous rise in NDVI and improvements in hydrothermal conditions contributed to the gradual elevation of NRP, each with varying degrees of influence across Ordos and its sub-regions.


Assuntos
Sequestro de Carbono , Ecossistema , China , Carbono/análise , Causalidade
11.
Nano Lett ; 24(3): 881-889, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38198246

RESUMO

Cellulose nanofiber (CNF) possesses excellent intrinsic properties, and many CNF-based high-performance structural and functional materials have been developed recently. However, the coordination of the mechanical properties and functionality is still a considerable challenge. Here, a CNF-based structural material is developed by a bioinspired gradient structure design using hollow magnetite nanoparticles and the phosphorylation-modified CNF as building blocks, which simultaneously achieves a superior mechanical performance and electromagnetic wave absorption (EMA) ability. Benefiting from the gradient design, the flexural strength of the structural material reached ∼205 MPa. Meanwhile, gradient design improves impedance matching, contributing to the high EMA ability (-59.5 dB) and wide effective absorption width (5.20 GHz). Besides, a low coefficient of thermal expansion and stable storage modulus was demonstrated as the temperature changes. The excellent mechanical, thermal, and EMA performance exhibited great potential for application in stealth equipment and electromagnetic interference protecting electronic packaging materials.

12.
Org Lett ; 26(1): 321-326, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38147353

RESUMO

Herein, the trisaccharide repeating unit of Fusobacterium nucleatum ssp. animalis ATCC 51191, which is used to develop oncomicrobial vaccines, was efficiently synthesized for the first time. The synthetic approach featured the following: (i) construction of the 1,2-cis-glycosidic linkage using the large steric hindrance of a phthalimide group at C4 of fucosamine; (ii) synthesis of the trisaccharide via a linear [2 + 1] glycosylation strategy; and (iii) installation of l-alanine using hexafluorophosphate azabenzotriazole tetramethyl uronium as a promoter.


Assuntos
Fusobacterium nucleatum , Trissacarídeos , Fusobacterium , Antígenos O , Alanina/química , Hidrocarbonetos Fluorados
13.
J Fungi (Basel) ; 9(10)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37888278

RESUMO

Paraphoma chrysanthemicola is a newly identified endophytic fungus. The focus of most studies on P. chrysanthemicola has been on its isolation, identification and effects on plants. However, the limited genomic information is a barrier to further research. Therefore, in addition to studying the morphological and physiological characteristics of P. chrysanthemicola, we sequenced its genome and compared it with that of Paraphoma sp. The results showed that sucrose, peptone and calcium phosphate were suitable sources of carbon, nitrogen and phosphorus for this strain. The activities of amylase, cellulase, chitosanase, lipase and alkaline protease were also detected. Sequencing analysis revealed that the genome of P. chrysanthemicola was 44.1 Mb, with a scaffold N50 of 36.1 Mb and 37,077 protein-coding genes. Gene Ontology (GO) annotation showed that mannose-modified glycosylation was predominant in monosaccharide utilisation. The percentage of glycoside hydrolase (GH) modules was the highest in the carbohydrate-active enzymes database (CAZy) analysis. Secondary metabolite-associated gene cluster analysis identified melanin, dimethylcoprogen and phyllostictine A biosynthetic gene clusters (>60% similarity). The results indicated that P. chrysanthemicola had a mannose preference in monosaccharide utilisation and that melanin, dimethylcoprogen and phyllostictine A were important secondary metabolites for P. chrysanthemicola as an endophytic fungus.

14.
Clin Cardiol ; 46(10): 1173-1184, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37469187

RESUMO

BACKGROUND: Reduced muscular strength is common in patients with heart failure (HF). The aim of the systematic review and meta-analysis was to evaluate the association between handgrip strength (HGS) and prognosis of patients with HF. HYPOTHESIS: Reduced HGS may be a risk factor of poor prognosis of patients with HF. METHODS: Relevant observational studies with longitudinal follow-up were obtained by a comprehensive search of PubMed, Embase, Cochrane Library, and Web of Science databases. A random-effects model was used to pool the results. RESULTS: Fifteen studies involving 7350 patients with HF were included in the meta-analysis. Pooled results showed that HF patients with lower HGS were associated with a higher risk of mortality during follow-up (risk ratio [RR]: 2.00, 95% confidence interval [CI]: 1.55-2.58, p < .001; I2 = 0%). Subgroup analysis showed that the association was not significantly affected by characteristics such as study country, design, mean age of the patients, HF status (stable or advanced/acute), HF type (reduced or preserved ejection fraction), follow-up duration, and quality score (p for subgroup difference all > 0.05). Further analysis showed that per 1 kgf decrease of HGS was associated with an 8% increased risk of mortality during follow-up (RR: 1.08, 95% CI: 1.05-1.11, p < .001; I2 = 12%). Moreover, HF patients with lower HGS were also related to a higher risk of composite outcome of HF rehospitalization or mortality (RR: 1.67, 95% CI: 1.19-2.35, p = .003; I2 = 53%). CONCLUSION: A low HGS may be associated with poor clinical outcomes of patients with HF.


Assuntos
Força da Mão , Insuficiência Cardíaca , Humanos , Prognóstico , Readmissão do Paciente , Fatores de Risco
15.
Cell Stem Cell ; 30(5): 617-631.e8, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37059100

RESUMO

Liver resection is the first-line treatment for primary liver cancers, providing the potential for a cure. However, concerns about post-hepatectomy liver failure (PHLF), a leading cause of death following extended liver resection, have restricted the population of eligible patients. Here, we engineered a clinical-grade bioartificial liver (BAL) device employing human-induced hepatocytes (hiHeps) manufactured under GMP conditions. In a porcine PHLF model, the hiHep-BAL treatment showed a remarkable survival benefit. On top of the supportive function, hiHep-BAL treatment restored functions, specifically ammonia detoxification, of the remnant liver and facilitated liver regeneration. Notably, an investigator-initiated study in seven patients with extended liver resection demonstrated that hiHep-BAL treatment was well tolerated and associated with improved liver function and liver regeneration, meeting the primary outcome of safety and feasibility. These encouraging results warrant further testing of hiHep-BAL for PHLF, the success of which would broaden the population of patients eligible for liver resection.


Assuntos
Falência Hepática , Fígado Artificial , Humanos , Animais , Suínos , Hepatócitos , Falência Hepática/cirurgia , Regeneração Hepática
16.
Adv Mater ; 35(24): e2300241, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36971025

RESUMO

The exploration of extreme environments has become necessary for understanding and changing nature. However, the development of functional materials suitable for extreme conditions is still insufficient. Herein, a kind of nacre-inspired bacterial cellulose (BC)/synthetic mica (S-Mica) nanopaper with excellent mechanical and electrical insulating properties that has excellent tolerance to extreme conditions is reported. Benefited from the nacre-inspired structure and the 3D network of BC, the nanopaper exhibits excellent mechanical properties, including high tensile strength (375 MPa), outstanding foldability, and bending fatigue resistance. In addition, S-Mica arranged in layers endows the nanopaper with remarkable dielectric strength (145.7 kV mm-1 ) and ultralong corona resistance life. Moreover, the nanopaper is highly resistant to alternating high and low temperatures, UV light, and atomic oxygen, making it an ideal candidate for extreme environment-resistant materials.

17.
Dalton Trans ; 52(15): 4643-4657, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37000445

RESUMO

Lanthanide-based single-molecule magnets (SMMs) have captivated the attention of researchers due to their great potential application in quantum information processing, storage, spintronics etc. Recent years have witnessed continuous breakthroughs in the field of SMMs, which make them very promising to be used in future practical functional applications. However, there remain formidable obstacles involving suppression of the quantum tunneling of magnetization (QTM) to maximize magnetic anisotropy, integrating and applying them in devices etc. Meanwhile, multifunctional 4f-based SMMs, which combine optical and electronic properties, are attracting increasing attention. This will provide a new perspective for future multifunctional device applications and deep insight into understanding the magnetic relaxation behavior as well. In this frontier article, we highlight the research that recently emerged involving 4f-based SMMs in combination with luminescence thermometry and photochromic and ferroelectric properties, respectively.

18.
Environ Sci Pollut Res Int ; 30(16): 47408-47421, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36738414

RESUMO

Satellite imagery time series change detection methods are effective in avoiding pseudochange due to vegetation phenology to a certain extent. Traditional time series change detection methods use thematic indexes (e.g., NDVI, RVI) to obtain time series information for corresponding change detection. However, change detection methods using several thematic index time series may not make full use of other spectral band information in remotely sensed images and may still suffer from over- and under-detections. To address this challenge, a temporal-spectral value and shape change detection method integrating thematic index information and spectral band information (TISB) is proposed. Possible clouds and cloud shadowing phenomena are removed according to the changes in the spectral values of the remotely sensed images to avoid the generation of pseudochanges in clouds. The spectral and time series information is used to obtain change information from the value perspective, and then, further possible enhanced change regions from a shape perspective to obtain the final change detection results through the expectation-maximization (EM) method. Experiments with Landsat images have shown that the TISB method improves detection results by approximately 1-4% compared to the comparison method.


Assuntos
Monitoramento Ambiental , Imagens de Satélites , Imagens de Satélites/métodos , Monitoramento Ambiental/métodos
19.
Angew Chem Int Ed Engl ; 62(6): e202211099, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36416072

RESUMO

The oriented pore structure of wood endows it with a variety of outstanding properties, among which the low thermal conductivity has attracted researchers to develop wood-like aerogels as excellent thermal insulation materials. However, the increasing demands of environmental protection have put forward new and strict requirements for the sustainability of aerogels. Here, we report an all-natural wood-inspired aerogel consisting of all-natural ingredients and develop a method to activate the surface-inert wood particles to construct the aerogel. The obtained wood-inspired aerogel has channel structure similar to that of natural wood, endowing it with superior thermal insulation properties to most existing commercial sponges. In addition, remarkable fire retardancy and complete biodegradability are integrated. With the above outstanding performances, this sustainable wood-inspired aerogel will be an ideal substitute for the existing commercial thermal insulation materials.

20.
Adv Mater ; 35(1): e2208098, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36281816

RESUMO

Widely used disposable plastic tableware is usually buried or directly discharged into the natural environment after using, which poses potential threats to the natural environment and human health. To solve this problem, nondegradable plastic tableware needs to be replaced by tableware composed of biodegradable structural materials with both food safety and the excellent mechanical and thermal properties. Here, a food-safe sargassum cellulose nanofiber (SCNF) is extracted from common seaweed in an efficient and low energy consuming way under mild reaction conditions. Then, by assembling the SCNF into a dense bulk material, a strong sargassum cellulose nanofiber structural material (SCNSM) with high strength (283 MPa) and high thermal stability (>160 °C) can be prepared. The SCNSM also possesses good machinability, which can be processed into tableware with different shapes, e.g., knives and forks. The overall performance of the SCNSM-based tableware is better than commercial plastic, wood-based, and poly(lactic acid) tableware, which shows great application potential in the tableware field.


Assuntos
Alimentos , Nanofibras , Humanos , Celulose/química , Nanofibras/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...