Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Nutrients ; 15(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37764698

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is the most common liver disorder, with a global prevalence of 25%. Currently, there remains no approved therapy. Ramulus mori (Sangzhi) alkaloids (SZ-As), a novel natural medicine, have achieved comprehensive benefits in the treatment of type 2 diabetes; however, few studies have focused on its role in ameliorating hepatic lipid metabolic disturbance. Herein, the therapeutic effect and mechanism of SZ-As on a high-fat diet (HFD) combined with streptozotocin (STZ)-induced NAFLD mice were investigated via incorporating transcriptomics and lipidomics. SZ-As reduced body weight and hepatic lipid levels, restored pathological alternation and converted the blood biochemistry perturbations. SZ-A treatment also remarkedly inhibited lipogenesis and enhanced lipolysis, fatty acid oxidation and thermogenesis. Transcriptomics analysis confirmed that SZ-As mainly altered fatty acid oxidative metabolism and the TNF signaling pathway. SZ-As were further demonstrated to downregulate inflammatory factors and effectively ameliorate hepatic inflammation. Lipidomics analysis also suggested that SZ-As affected differential lipids including triglyceride (TG) and phosphatidylcholine (PC) expression, and the main metabolic pathways included glycerophospholipid, sphingomyelins and choline metabolism. Collectively, combined with transcriptomics and metabolomics data, it is suggested that SZ-As exert their therapeutic effect on NAFLD possibly through regulating lipid metabolism pathways (glycerophospholipid metabolism and choline metabolism) and increasing levels of PC and lysophosphatidylcholine (LPC) metabolites. This study provides the basis for more widespread clinical applications of SZ-As.

3.
Eur J Med Chem ; 258: 115552, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37315474

RESUMO

Human cytochrome P450 1B1 (hCYP1B1), an extrahepatic cytochrome P450 enzyme over-expressed in various tumors, has been validated as a promising target for preventing and treating cancers. Herein, two series of chalcone derivatives were synthesized to discover potent hCYP1B1 inhibitors without AhR agonist effect. Structure-activity relationship (SAR) studies demonstrated that 4'-trifluoromethyl on the B-ring strongly enhanced the anti-hCYP1B1 effects, identifying A9 as a promising lead compound. Further SAR analysis on A9 derivatives (modified A-ring of 4'-trifluoromethylchalcone) showed that introducing 2-methoxyl improved the anti-hCYP1B1 effect and selectivity, while introducing a methoxyl at the C-4 site was beneficial for avoiding AhR activation. Ultimately, five 4'-trifluoromethyl chalcones were identified as potent hCYP1B1 inhibitors (IC50 < 10 nM), while B18 exhibits the most potent anti-hCYP1B1 effect (IC50 = 3.6 nM), suitable metabolic stability and good cell-permeability. B18 also acted as an AhR antagonist and could down-regulate hCYP1B1 in living systems. Mechanistic studies showed that B18 potently inhibited hCYP1B1 in a competitive inhibition manner (Ki = 3.92 nM), while docking simulations revealed that B18 could tightly bind to the catalytic cavity of hCYP1B1 mainly via hydrophobic and hydrogen-bonding interactions. Furthermore, B18 could potently inhibit hCYP1B1 in living cells and showed remarkable anti-migration ability on MFC-7 cells. Taken together, this study deciphered the SARs of chalcones as hCYP1B1 inhibitors and provided several potent hCYP1B1 inhibitors as promising candidates for the development of more efficacious anti-migration agents.


Assuntos
Chalconas , Humanos , Chalconas/farmacologia , Chalconas/química , Sistema Enzimático do Citocromo P-450/metabolismo , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular
4.
Zhongguo Zhong Yao Za Zhi ; 47(19): 5383-5388, 2022 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-36472046

RESUMO

Tibetan medicine is an essential part of Chinese medicine and has unique theoretical experience and therapeutic advantages. According to the development principle of inheriting the essence, sticking to the truth, and keeping innovative, the supervision department should give clear and reasonable guidance considering the characteristics of Tibetan medicine, establish a standard system for quality control, clinical verification and evaluation, and accelerate the research and commercialization of new drugs. In view of the needs of drug supply-side reform and the current situation of Tibetan medicine and new pharmaceutical research, we ponder and provide suggestions on the confusion faced by the current supervision of Tibetan drug registration, hoping to contribute to the supervision strategy of Tibetan drug registration and the high-quality development of Tibetan medicine industry.


Assuntos
Medicina Tradicional Tibetana , Pesquisa Farmacêutica , Tibet , Controle de Qualidade , Indústria Farmacêutica
5.
Zhongguo Zhong Yao Za Zhi ; 47(4): 1120-1125, 2022 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-35285213

RESUMO

Since the implementation of drug registration in China, the classification of Chinese medicine has greatly met the needs of public health and effectively guided the transformation, inheritance, and innovation of research achievements on traditional Chinese medicine(TCM). In the past 30 years, the development of new Chinese medicine has followed the registration transformation model of " one prescription for single drug". This model refers to the R&D and registration system of modern drugs, and approximates to the " law-abiding" medication method in TCM clinic, while it rarely reflects the sequential therapy of syndrome differentiation and comprehensive treatment with multiple measures. In 2017, Opinions on Deepening the Reform of Review and Approval System and Encouraging the Innovation of Drugs and Medical Devices released by the General Office of the CPC Central Committee and the General Office of the State Council pointed out that it is necessary to " establish and improve the registration and technical evaluation system in line with the characteristics of Chinese medicine, and handle the relationship between the traditional advantages of Chinese medicine and the requirements of modern drug research". Therefore, based on the development law and characteristics of TCM, clinical thinking should be highlighted in the current technical requirements and registration system of research and development of Chinese medicine. Based on the current situation of registration supervision of Chinese medicine and the modern drug research in China, the present study analyzed limitations and deficiency of " one prescription for single drug" in the research and development of Chinese medicine. Additionally, a new type of " series prescriptions" was proposed, which was consistent with clinical thinking and clinical reality. This study is expected to contribute to the independent innovation and high-quality development of the TCM industry.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , China , Medicamentos de Ervas Chinesas/uso terapêutico , Prescrições , Saúde Pública
6.
Pharm Biol ; 60(1): 195-205, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35060427

RESUMO

CONTEXT: Folium Ginkgo extract and tetramethylpyrazine sodium chloride injection (Xingxiong injection) is a compound preparation commonly used for treating cerebral ischaemia/reperfusion injury in ischaemic stroke in China. However, its potential mechanisms on ischaemic stroke remain unknown. OBJECTIVE: This study explores the potential mechanisms of Xingxiong injection in vivo or in vitro. MATERIALS AND METHODS: Sprague-Dawley (SD) rats were randomly assigned to five groups: the sham (normal saline), the model (normal saline) and the Xingxiong injection groups (12.5, 25 or 50 mL/kg). The rats were subjected to 2 h of middle cerebral artery occlusion (MCAO) followed by reperfusion for 14 d. Xingxiong injection was administered via intraperitoneal (i.p.) injection immediately after ischaemia induction for 14 d. Afterwards, rats were sacrificed at 14 d induced by administration of Xingxiong injection. RESULTS: Xingxiong injection significantly reduces infarct volume (23%) and neurological deficit scores (93%) compared with the MCAO/R group. Additionally, Xingxiong injection inhibits the loss in mitochondrial membrane potential (43%) and reduces caspase-3 level (44%), decreases NOX (41%), protein carbonyl (29%), 4-HNE (40%) and 8-OhdG (41%) levels, inhibits the expression of inflammatory factors, such as TNF-α (26%), IL-1ß (34%), IL-6 (39%), MCP-1 (36%), CD11a (41%) and ICAM-1 (43%). Moreover, Xingxiong injection can increase p-Akt/Akt (35%) and Nrf2 (47%) protein expression and inhibit NLRP3 (42%) protein expression. CONCLUSIONS: Xingxiong injection prevents cerebral ischaemia/reperfusion injury via activating the Akt/Nrf2 pathway and inhibiting NLRP3 inflammasome. These findings provide experimental evidence for clinical use of drugs in the treatment of ischaemic stroke.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Ginkgo biloba/química , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/química , Infarto da Artéria Cerebral Média , Inflamassomos/metabolismo , AVC Isquêmico/tratamento farmacológico , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirazinas/química , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
7.
Nanomicro Lett ; 13(1): 206, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34633551

RESUMO

The 3D hollow hierarchical architectures tend to be designed for inhibiting stack of MXene flakes to obtain satisfactory lightweight, high-efficient and broadband absorbers. Herein, the hollow NiCo compound@MXene networks were prepared by etching the ZIF 67 template and subsequently anchoring the Ti3C2Tx nanosheets through electrostatic self-assembly. The electromagnetic parameters and microwave absorption property can be distinctly or slightly regulated by adjusting the filler loading and decoration of Ti3C2Tx nanoflakes. Based on the synergistic effects of multi-components and special well-constructed structure, NiCo layered double hydroxides@Ti3C2Tx (LDHT-9) absorber remarkably achieves unexpected effective absorption bandwidth (EAB) of 6.72 GHz with a thickness of 2.10 mm, covering the entire Ku-band. After calcination, transition metal oxide@Ti3C2Tx (TMOT-21) absorber near the percolation threshold possesses minimum reflection loss (RLmin) value of - 67.22 dB at 1.70 mm within a filler loading of only 5 wt%. This work enlightens a simple strategy for constructing MXene-based composites to achieve high-efficient microwave absorbents with lightweight and tunable EAB.

8.
Mol Med Rep ; 24(1)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34036388

RESUMO

Guan Xin Dan Shen formulation (GXDSF) is a widely used treatment for the management of coronary heart disease in China and is composed of three primary components: Dalbergiae odoriferae Lignum, Salviae miltiorrhizae Radix et Rhizoma and Panax notoginseng Radix et Rhizoma. However, the potential use of GXDSF for the management of diabetic cardiomyopathy (DCM) has not been previously assessed. The present study aimed to assess the effects of GXDSF on DCM, as well as the underlying mechanism. In the present study, db/db mice were used. Following treatment with GXDSF for 10 weeks, fasting blood glucose, insulin sensitivity, serum lipid levels and cardiac enzyme levels were detected. Cardiac pathological alterations and cardiac function were assessed by performing hematoxylin and eosin staining and echocardiograms, respectively. TUNEL assays were conducted to assess cardiomyocyte apoptosis. Additionally, reverse transcription­quantitative PCR and western blotting were performed to evaluate the expression of apoptosis­associated genes and proteins, respectively. In the model group, the db/db mice displayed obesity, hyperlipidemia and hyperglycemia, accompanied by noticeable myocardial hypertrophy and diastolic dysfunction. Following treatment with GXDSF for 10 weeks, serum triglyceride levels were lower and insulin sensitivity was enhanced in db/db mice compared with the model group, which indicated improvement in condition. Cardiac hypertrophy and dysfunction were also improved in db/db mice following treatment with GXDSF, resulting in significantly increased left ventricular ejection fraction and fractional shortening compared with the model group. Following treatment with metformin or GXDSF, model­induced increases in levels of myocardial enzymes were decreased in the moderate and high dose groups. Moreover, the results indicated that, compared with the model group, GXDSF significantly inhibited cardiomyocyte apoptosis in diabetic heart tissues by increasing Bcl­2 expression and decreasing the expression levels of Bax, cleaved caspase­3 and cleaved caspase­9. Mechanistically, GXDSF enhanced Akt phosphorylation, which upregulated antioxidant enzymes mediated by nuclear factor erythroid 2­related factor 2 (Nrf2) signaling. Collectively, the results of the present study indicated that GXDSF attenuated cardiac dysfunction and inhibited cardiomyocyte apoptosis in diabetic mice via activation of Akt/Nrf2 signaling. Therefore, GXDSF may serve as a potential therapeutic agent for the management of DCM.


Assuntos
Cardiomegalia/prevenção & controle , Cardiotônicos/farmacologia , Cardiomiopatias Diabéticas/prevenção & controle , Medicamentos de Ervas Chinesas/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Cardiomegalia/etiologia , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Cardiotônicos/uso terapêutico , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Medicamentos de Ervas Chinesas/uso terapêutico , Resistência à Insulina , Lipídeos/sangue , Masculino , Camundongos Endogâmicos , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-akt/metabolismo
9.
Biomed Pharmacother ; 140: 111693, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34029951

RESUMO

Nicotinamide phosphoribosyltransferase (NAMPT) maintains mitochondrial function and protects against cerebral ischemic injury by improving energy metabolism. Notoginsenoside R1 (R1), a unique constituent of Panax notoginseng, has been shown to promote the proliferation and tube formation of human umbilical vein endothelial cells. Whether R1 has proangiogenesis on the activation of NAMPT in ischemic stroke remains unclear. The purpose of this study was to investigate the pharmacodynamic effect and mechanism of R1 on angiogenesis after ischemic stroke. We used male Sprague-Dawley (SD) rats subjected to middle cerebral artery occlusion/reperfusion (MCAO/R). R1 was administered via intraperitoneal (i.p.) injection immediately after ischemia induction. The promotion of R1 on angiogenesis were detected by immunofluorescence staining, 3D stereoscopic imaging and transmission electron microscopy detection. HBMEC cells were pretreated with different concentrations of R1 for 12 h before oxygen-glucose deprivation/reoxygenation (OGD/R) exposure. Afterward, scratch assay, EdU staining and tube formation were determined. Western blot analyses of proteins, including those involved in angiogenesis, NAMPT-SIRT1 cascade, VEGFR-2, and Notch signaling, were conducted. We showed that R1 significantly restored cerebral blood flow, improved mitochondrial energy metabolism and promoted angiogenesis. More importantly, incubation with 12.5-50 µM R1 significantly increased the migration, proliferation and tube formation of HBMECs in vitro. The promotion of R1 on angiogenesis were associated with the NAMPT-NAD+-SIRT1 cascade and Notch/VEGFR-2 signaling pathway, which was partially eliminated by inhibitors of NAMPT and SIRT1. We demonstrated that R1 promotes post-stroke angiogenesis via activating NAMPT-NAD+-SIRT1 cascade. The modulation of Notch signaling and VEGFR-2 contribute to the post-stroke angiogenesis. These findings offer insight for exploring new therapeutic strategies for neurorestoration via R1 treatment after ischemic stroke.


Assuntos
Isquemia Encefálica/metabolismo , Citocinas/metabolismo , Ginsenosídeos/farmacologia , NAD/metabolismo , Neovascularização Patológica/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Receptores Notch/metabolismo , Sirtuína 1/metabolismo , Animais , Isquemia Encefálica/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Glucose/metabolismo , Humanos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Masculino , Neovascularização Patológica/tratamento farmacológico , Panax notoginseng/química , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
11.
Orthop Surg ; 13(3): 708-718, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33719221

RESUMO

OBJECTIVES: There is a controversy on the diagnostic reliability and accuracy of synovial fluid α-defensin in periprosthetic joint infection (PJI). We performed this meta-analysis to evaluate the diagnostic accuracy of the α-defensin lateral flow test in PJI. METHODS: PubMed, Embase, and the Cochrane library were systematically searched, and articles (up to January 2020) on the diagnosis of hip and knee PJIs using the α-defensin Synovasure lateral flow test were included. The diagnostic accuracy of the α-defensin lateral flow test in PJI was evaluated using meta-analysis. The pooled sensitivity, specificity, accuracy, positive and negative likelihood ratio, diagnostic odds ratio, and post-test probabilities were calculated. RESULTS: Seventeen studies including 1443 cases were included. Meta-analysis showed the pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and a diagnostic odds ratio was 0.83 (95% CI 0.77, 0.88), 0.95 (95% CI 0.93, 0.97), 16.86 (95% CI 11.67, 24.37), 0.17 (95% CI 0.13, 0.24) and 85.30 (95% CI 47.76, 152.35), respectively. The area under the hierarchical summary receiver operating characteristic curve was 0.97 (95% CI 0.95, 0.98). Subgroup analysis also confirmed the high efficiency of α-defensin Synovasure lateral flow test in diagnosing PJIs, irrespective of ethnicity. Fagan's nomogram analysis there was a high positive post-test probability of 94% and a low negative post-test probability of 15%. CONCLUSIONS: We indicated that the α-defensin lateral flow test had a high accuracy for diagnosing PJI. Large-scale studies are needed to validate its significance in PJI diagnosis.


Assuntos
Artroplastia de Quadril , Artroplastia do Joelho , Infecções Relacionadas à Prótese/diagnóstico , Líquido Sinovial/metabolismo , alfa-Defensinas/metabolismo , Biomarcadores/metabolismo , Humanos , Reprodutibilidade dos Testes
12.
Ann Transl Med ; 9(3): 246, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33708873

RESUMO

BACKGROUND: Notoginseng leaf triterpenes (PNGL) is believed to have neuroprotective effects via the inhibition of inflammatory response and neuronal apoptosis. However, its mechanisms underlying the anti-ischemia/reperfusion (I/R) injury effects on the regulation of small molecule metabolism in rat brain remains unclear. The purpose of this study was thus to explore the mechanisms of PNGL on the regulation of small molecule metabolism in rat brain after I/R injury using matrix-assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI). METHODS: As a model of in vivo cerebral I/R injury, male Sprague-Dawley (SD) rats were established with a middle cerebral artery occlusion/reperfusion (MCAO/R) model after PNGL administration with 40 mg·kg-1 through intraperitoneal injection (i.p.) for 7 days. We assessed the neurological behavior, regional cerebral blood flow (r CBF), neuron injury, and spatial distribution of metabolic small molecules. RESULTS: Our in vivo results suggested that PNGL increased cerebral blood flow and relieved neurological dysfunction. Furthermore, using MALDI-MSI, we demonstrated that PNGL regulated 16 endogenous small molecules implicated in metabolic networks including tricarboxylic acid (TCA) cycle, adenosine triphosphate (ATP) metabolism, malate-aspartate shuttle, metal ions, and antioxidants underwent noticeable changes after reperfusion for 24 h. CONCLUSIONS: PNGL is a novel cerebrovascular agent that can improve cerebral blood flow and attenuate adverse neurological disorders. The mechanisms are closely correlated with relative metabolic pathways, which offers insight into exploring new mechanisms in PNGL for the treatment of cerebral I/R injury.

13.
Ann Palliat Med ; 10(2): 1650-1667, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33222458

RESUMO

BACKGROUND: Combination of aspirin (ASA) and clopidogrel (CLP) [dual antiplatelet therapy (DAPT)] has been limited in reducing early recurrent stroke events. Xuesaitong injection (lyophilized) (XST) made of total saponins from P. notoginseng, which significantly improves cerebral circulation and has been widely used in clinical applications for decades to treat and prevent ischemic stroke. Here, we confirmed the protective effect and mechanism of XST combined with DAPT (XST+ASA+CLP) on cerebral ischemia/reperfusion injury, exploring their better pharmacological action for clinical patients. METHODS: Sprague-Dawley rats (SD rats) (n=9 in each group) were randomly assigned to three groups and pretreated with XST, ASA+CLP, or XST+ASA+CLP for 7 days. Then rats were subjected to 2 h of middle cerebral artery occlusion (MCAO) followed by reperfusion for 24 h. Therapeutic effect of XST+ASA+CLP was measured by infarct volume, neurological behavior and regional cerebral blood flow (rCBF). Inhibition of neuronal apoptosis and glial cells was determined by immunofluorescent staining. We studied the protein levels of neurotrophic factors, neuroplasticity-related factors, oxidative stress indicators and inflammatory factors by ELISA assay. RESULTS: XST+ASA+CLP group showed significant reduction in infarct volumes and neurological deficit scores. XST+ASA+CLP group also had higher levels in rCBF and synaptic growth, and showed remarkable inhibition of microglia and astrocytes activation and the neuronal apoptosis. In addition, XST+ASA+CLP group had lower levels of NADPH, protein carbonyl, 4-hydroxynonenal (4-HNE), 8-hydroxydeoxyguanosine (8-OHdG) and several inflammatory cytokines. Moreover, XST+ASA+CLP group also had lower levels of NOX2, inducible nitric oxide synthase (iNOS), interleukin (IL)-6, and p-STAT3/STAT3. CONCLUSIONS: These results demonstrate that a combination of XST, ASA, and CLP effectively protected rats against middle cerebral artery occlusion/reperfusion (MCAO/R) injury by suppressing the NOX2/IL-6/ STAT3 pathway. These novel findings provide theoretical basis and experimental evidence for the rationality of clinical combined use of drugs in the treatment of ischemic stroke.


Assuntos
Traumatismo por Reperfusão , Saponinas , Animais , Aspirina/uso terapêutico , Clopidogrel/uso terapêutico , Medicamentos de Ervas Chinesas , Inflamação , Interleucina-6 , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Reperfusão , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Fator de Transcrição STAT3
14.
Oxid Med Cell Longev ; 2020: 2415269, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32934760

RESUMO

Calenduloside E (CE) is a natural triterpenoid saponin isolated from Aralia elata (Miq.) Seem., a well-known traditional Chinese medicine. Our previous studies have shown that CE exerts cardiovascular protective effects both in vivo and in vitro. However, its role in myocardial ischemia/reperfusion injury (MIRI) and the mechanism involved are currently unknown. Mitochondrial dynamics play a key role in MIRI. This study investigated the effects of CE on mitochondrial dynamics and the signaling pathways involved in myocardial ischemia/reperfusion (MI/R). The MI/R rat model and the hypoxia/reoxygenation (H/R) cardiomyocyte model were established in this study. CE exerted significant cardioprotective effects in vivo and in vitro by improving cardiac function, decreasing myocardial infarct size, increasing cardiomyocyte viability, and inhibiting cardiomyocyte apoptosis associated with MI/R. Mechanistically, CE restored mitochondrial homeostasis against MI/R injury through improved mitochondrial ultrastructure, enhanced ATP content and mitochondrial membrane potential, and reduced mitochondrial permeability transition pore (MPTP) opening, while promoting mitochondrial fusion and preventing mitochondrial fission. However, genetic silencing of OPA1 by siRNA abolished the beneficial effects of CE on cardiomyocyte survival and mitochondrial dynamics. Moreover, we demonstrated that CE activated AMP-activated protein kinase (AMPK) and treatment with the AMPK inhibitor, compound C, abolished the protective effects of CE on OPA1 expression and mitochondrial function. Overall, this study demonstrates that CE is effective in mitigating MIRI by modulating AMPK activation-mediated OPA1-related mitochondrial fusion.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/enzimologia , Ácido Oleanólico/análogos & derivados , Saponinas/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Cardiotônicos/farmacologia , Cardiotônicos/uso terapêutico , Linhagem Celular , Inativação Gênica/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Masculino , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/ultraestrutura , Dinâmica Mitocondrial/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ácido Oleanólico/farmacologia , Ácido Oleanólico/uso terapêutico , Ratos Sprague-Dawley , Saponinas/farmacologia , Transdução de Sinais/efeitos dos fármacos
15.
Biomed Pharmacother ; 129: 110470, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32768957

RESUMO

Ischemic stroke is a syndrome of severe neurological responses that cause neuronal death, damage to the neurovascular unit and inflammation. Notoginsenoside R1 (NG-R1) is a neuroprotective drug that is commonly used to treat neurodegenerative and cerebrovascular diseases. However, its potential mechanisms on the regulation of small molecule metabolism in ischemic stroke are largely unknown. The aim of this study was to explore the potential mechanisms of NG-R1 on the regulation of small molecule metabolism after ischemic stroke. Here, we found that NG-R1 reduced infarct size and improved neurological deficits by ameliorating neuronal damage and inhibiting glial activation in MCAO/R rats. Furthermore, using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), we clarified that NG-R1 regulated ATP metabolism, the tricarboxylic acid (TCA) cycle, the malate-aspartate shuttle, antioxidant activity, and the homeostasis of iron and phospholipids in the striatum and hippocampus of middle cerebral artery occlusion/reperfusion (MCAO/R) rats. In general, NG-R1 is a promising compound for brain protection from ischemic/reperfusion injury, possibly through the regulation of brain small molecule metabolism.


Assuntos
Encéfalo/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Ginsenosídeos/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , AVC Isquêmico/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Animais , Apoptose/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/fisiopatologia , AVC Isquêmico/diagnóstico por imagem , AVC Isquêmico/metabolismo , AVC Isquêmico/fisiopatologia , Masculino , Valor Preditivo dos Testes , Ratos Sprague-Dawley , Traumatismo por Reperfusão/diagnóstico por imagem , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/fisiopatologia , Fatores de Tempo
16.
Zhongguo Zhong Yao Za Zhi ; 45(11): 2595-2600, 2020 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-32627494

RESUMO

Diabetic kidney disease(DKD) has become a primary cause of end-stage kidney disease, without any effective treatment available. In this study, we assessed the protective effect of Guanxin Danshen Formulation(GXDSF) on diabetic nephropathy in db/db mice. The db/m and db/db mice were randomly divided into 4 groups: control group, model group, metformin group, and GXDSF group. After 8 weeks' treatment with GXDSF, metformin or normal saline, the mice were sacrificed, and the blood and kidney tissues were collected for the further analysis. Compared with the model group, TG, TCH and LDL levels significantly decreased in the GXDSF group. The results from HE and PAS staining showed that db/db mice exhibited abnormal kidney tissues with increased glomerular volume, basement-membrane thickening and mesangial cell proliferation, which could be significantly alleviated by GXDSF treatment. GXDSF treatment also reduced serum creatinine and BUN. Meanwhile, GXDSF treatment markedly elevated GSH-PX levels, while reduced LDH and MDA levels in the kidney tissues. Western blot assay showed that GXDSF evidently up-regulated protein levels of ERα and p-Akt, and subsequently promoted HO-1 expression mediated by Nrf2. These data collectively indicated that GXDSF protects db/db mice against DN by regulating ERα and Nrf2-mediated HO-1 expression.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Salvia miltiorrhiza , Animais , Creatinina , Rim , Glomérulos Renais , Camundongos , Fator 2 Relacionado a NF-E2
17.
Int Immunopharmacol ; 82: 106316, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32088642

RESUMO

Hydroxysafflor yellow A (HSYA) is an effective therapeutic agent that alleviates myocardial ischaemia/reperfusion injury (MIRI), but the exact mechanisms remain elusive. The aim of this study was to investigate the potential protective effect of HSYA against MIRI through mechanisms related to NLRP3 inflammasome regulation. In this study, hypoxia/reoxygenation (H/R)-induced H9c2 cardiomyocytes were treated with HSYA or the AMPK inhibitor, compound C (CC). Our results showed that HSYA pretreatment improved cardiomyocyte viability, maintained mitochondrial membrane potential, reduced apoptotic cardiomyocytes, decreased caspase-3 activity, and inhibited NOD-like receptor 3 (NLRP3) inflammasome activation during H/R injury. Moreover, the inhibition of AMPK activation by the CC inhibitor partially abolished the effects of HSYA treatment, including suppressing the upregulation of NLRP3 inflammasome components (NLRP3, caspase-1 and interleukin-1ß) and promoting autophagy (LC3-II/LC3-I and p62). In conclusion, the protective mechanism of HSYA in H/R-induced cardiomyocyte injury is associated with inhibiting NLRP3 inflammasome activation through the AMPK signalling pathway.

18.
Polymers (Basel) ; 12(2)2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32033360

RESUMO

Stretchable nano-fibers have attracted dramatic attention for the utility in wearable and flexible electronics. In the present case, Ag nanowires (AgNWs)-intertwined thermoplastic polyurethanes (TPU) unwoven nano-membrane is fabricated by an electrospinning method and dip coating technique. Then a strain sensor with a spring-like configuration is fabricated by a twisted method. The sensor exhibits superior electrical conductivity up to 3990 S cm-1 due to the high weight percentage of the Ag nanowires. Additionally, thanks to the free-standing spring-like configuration that consists of uniform neat loops, the strain sensor can detect a superior strain up to 900% at the point the sensor ruptures. On the other hand, the configuration can mostly protect the AgNWs from falling off. Furthermore, major human motion detection, like movement of a human forefinger, and minor human motion detection, such as a wrist pulse, show the possible application of the sensor in the field of flexible electronics.

19.
Phytomedicine ; 68: 153169, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31999976

RESUMO

BACKGROUND: Activation of NLRP3 inflammasome plays a key role in cardiac dysfunction for acute myocardial ischemia-reperfusion injury. Scutellarin (Scu) is a flavonoid purified from Erigeron breviscapus. Whether Scu has any influence on the activation of NLRP3 inflammasome in cardiomyocytes remains unknown. PURPOSE: We aimed to examine the therapeutic effect of Scu on cardiomyocyte ischemia-reperfusion (I/R) injury and its effect on NLRP3 inflammasome in rats with acute myocardial I/R injury and anoxia/reoxygenation (A/R)-induced H9c2 injuries. METHODS: Heart injuries were induced through 30 min of ischemia followed by 24 h of reperfusion. Scu was intraperitoneally administered 15 min before vascular ligation. Effects of Scu on cardiac injury were detected by echocardiograms, TTC staining, and histological and immunohistochemical analyses. The effects of Scu on biochemical parameters were analyzed. H9c2 cells were pretreated with different concentrations of Scu for 6 h before A/R exposure. Afterward, cell viability, LDH release, and Hoechst 33342 and peromide iodine double staining were determined. Western blot analyses of proteins, including those involved in autophagy, NLRP3, mTOR complex 1 (mTORC1), and Akt signaling, were conducted. RESULTS: In vivo study revealed that Scu improved diastolic dysfunction, ameliorated myocardium structure abnormality, inhibited myocyte apoptosis and inflammatory response, and promoted autophagy. Scu reduced NLRP3 inflammasome activation, inhibited mTORC1 activity, and increased Akt phosphorylation. In vitro investigation showed the same results. The Scu-mediated NLRP3 inflammasome and mTORC1 inhibition and cardioprotection were abolished through the genetic silencing of Akt by siRNA. CONCLUSIONS: The cardioprotective effect of Scu was achieved through its anti-inflammatory effect. It suppressed the activation of NLRP3 inflammasome. In addition, inflammasome restriction by Scu was dependent on Akt activation and mTORC1 inhibition.


Assuntos
Apigenina/farmacologia , Cardiotônicos/farmacologia , Glucuronatos/farmacologia , Inflamassomos/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley
20.
Chin Herb Med ; 12(3): 273-280, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36119009

RESUMO

Objective: Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal interstitial lung disease with high mortality. The pivotal role of Th1/Th2 immunological balance in the development and progression of IPF has been demonstrated previously. This study aimed to evaluate the effect of Jinbei Oral Liquid (JBOL) on IPF and its relationship with Th1/Th2 shift. Methods: Rats were divided into six groups: control group, model group (bleomycin), pirfenidone group (positive group, 54 mg/kg, i.g.) and JBOL (5.4, 10.8 and 21.6 mL/kg, i.g.) groups. The rat model was established by an intratracheal instillation of bleomycin (BLM, 5 mg/kg). One day after injection of BLM, pirfenidone or JBOL was given to rats once daily within 28 consecutive days, respectively. Positron emission tomography/computed tomography (PET/CT) was performed on the treated rats. The extent of alveolitis and fibrosis was observed by H&E and Masson trichrome staining. The contents of TGF-ß1, TNF-α, IL-4 and IFN-γ were further quantified by ELISA assay. Results: PET/CT and histopathological evidence showed the ability of JBOL to attenuate bleomycin-induced alveolitis and fibrosis extent, and the alveolitis lesion score was markedly decreased compared with the model group. The increased expression of inflammatory cytokines TGF-ß1 and TNF-α induced by bleomycin was also suppressed by JBOL. The Th1 response was limited by the reduced IFN-γ after BLM administration, and the Th2 response predominated significantly marked by the increased IL-4. JBOL could increase the level of IFN-γ and markedly increased the ratio of IFN-γ/IL-4. Conclusion: These findings suggested that JBOL may attenuate BLM-induced idiopathic pulmonary fibrosis via reducing inflammatory cell infiltration, pro-inflammatory cytokine release and excessive collagen deposition in rats. One of the mechanisms is the reversion of Th1/Th2 shift caused by BLM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...