Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(49): 22589-22598, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36417274

RESUMO

Cubic α-phase molybdenum carbides (α-MoC1-x) exhibit great potential in hydrogen production at low temperatures due to their excellent activity in water dissociation. However, the design strategies of α-MoC1-x are severely restricted by the harsh synthesis conditions, which involve multistep ammonification and carburization or the utilization of a significant amount of noble metals. Herein, high-purity α-MoC1-x synthesis in a one-step carburization process was achieved with the assistance of a trace amount of Rh (0.02%). The structural evolution of Mo species during phase transition was monitored via qualitative and quantitative analysis by in situ X-ray diffraction (XRD) and in situ X-ray absorption spectroscopy (XAS), respectively. Environmental transmission electron microscopy (ETEM) was used to follow the visual changes. We reveal that the reduction of monoclinic MoO3 to cubic oxygen-deficient Mo oxide (MoOx) at low temperatures owing to the promoted H2 activation on Rh sites is vital to the following carbon atom insertion and transformation to α-MoC1-x, making the carburization follow the topological route. The systematic analysis of the relationship between the reduction behavior and the structural evolution supplies a feasible strategy for the α-MoC1-x synthesis, and in situ characterizations shed light on controlling the phase transformation during carburization.

2.
Nat Commun ; 12(1): 7209, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34893618

RESUMO

The rational design of high-temperature endurable Cu-based catalysts is a long-sought goal since they are suffering from significant sintering. Establishing a barrier on the metal surface by the classical strong metal-support interaction (SMSI) is supposed to be an efficient way for immobilizing nanoparticles. However, Cu particles were regarded as impossible to form classical SMSI before irreversible sintering. Herein, we fabricate the SMSI between sputtering reconstructed Cu and flame-made LaTiO2 support at a mild reduction temperature, exhibiting an ultra-stable performance for more than 500 h at 600 °C. The sintering of Cu nanoparticles is effectively suppressed even at as high as 800 °C. The critical factors to success are reconstructing the electronic structure of Cu atoms in parallel with enhancing the support reducibility, which makes them adjustable by sputtering power or decorated supports. This strategy will extremely broaden the applications of Cu-based catalysts at more severe conditions and shed light on establishing SMSI on other metals.

3.
Chem Commun (Camb) ; 57(61): 7509-7512, 2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34250991

RESUMO

Facile synthesis of a highly efficient Cu/ZrO2 catalyst by a flame spray pyrolysis (FSP) method was developed for methanol production from CO2 hydrogenation. The instantaneous quenching process from extremely high temperature in FSP was used for rational design of a Cu/ZrO2 catalyst, not only producing the metastable tetragonal phase ZrO2, but also strengthening the metal-support interaction. The methanol yield of one-step synthesized FSP-Cu/ZrO2 was 3 times higher than the one made by the traditional method. This strategy is anticipated to pave the way for strengthening metal-support interactions of supported catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...