Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 38(5): e23523, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38457275

RESUMO

Zinc and ring finger 3 (ZNRF3) is a negative suppressor of Wnt signal and newly identified as an important regulator in tumorigenesis and development. However, the pan-cancer analysis of ZNRF3 has not been reported. We found that ZNRF3 was significantly decreased in six tumors including CESC, KIRP, KIRC, SKCM, OV, and ACC, but increased in twelve tumors, namely LGG, ESCA, STES, COAD, STAD, LUSC, LIHC, THCA, READ, PAAD, TGCT, and LAML. Clinical outcomes of cancer patients were closely related to ZNRF3 expression in ESCA, GBM, KIRC, LUAD, STAD, UCEC, LGG, and SARC. The highest genetic alteration frequency of ZNRF3 occurred in ACC. Abnormal expression of ZNRF3 could be attributed to the differences of copy number variation (CNV) and DNA methylation as well as ZNRF3-interacting proteins. Besides, ZNRF3 were strongly associated with tumor heterogeneity, tumor stemness, immune score, stromal score and ESTIMATE score in certain cancers. In terms of immune cell infiltration, ZNRF3 was positively correlated to infiltration of cancer-associated fibroblasts in CESC, HNSC, OV, PAAD, PRAD, and THYM, but negatively associated with infiltration of CD8 T cells in HNSC, KIRC, KIRP and THYM. Moreover, ZNRF3 expression was correlated with most immune checkpoint genes in SARC, LUSC, LUAD, PRAD, THCA, UVM, TGCT, and OV, and associated with overwhelming majority of immunoregulatory genes in almost all cancers. Most RNA modification genes were also remarkably related to ZNRF3 level in KIRP, LUAD, LUSC, THYM, UVM, PRAD, and UCEC, indicating that ZNRF3 might have an important effect on cancer epigenetic regulation. Finally, we verified the expression and role of ZNRF3 in clinical specimens and cell lines of renal cancer and liver cancer. This study provides a comprehensive pan-cancer analysis of ZNRF3 and reveals the complexity of its carcinogenic effect.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Variações do Número de Cópias de DNA , Epigênese Genética , Prognóstico , Zinco
2.
Gastroenterology ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467382

RESUMO

BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDAC) has a desmoplastic tumor stroma and immunosuppressive microenvironment. Galectin-3 (GAL3) is enriched in PDAC, highly expressed by cancer cells and myeloid cells. However, the functional roles of GAL3 in the PDAC microenvironment remain elusive. METHODS: We generated a novel transgenic mouse model (LSL-KrasG12D/+;Trp53loxP/loxP;Pdx1-Cre;Lgals3-/- [KPPC;Lgals3-/-]) that allows the genetic depletion of GAL3 from both cancer cells and myeloid cells in spontaneous PDAC formation. Single-cell RNA-sequencing analysis was used to identify the alterations in the tumor microenvironment upon GAL3 depletion. We investigated both the cancer cell-intrinsic function and immunosuppressive function of GAL3. We also evaluated the therapeutic efficacy of GAL3 inhibition in combination with immunotherapy. RESULTS: Genetic deletion of GAL3 significantly inhibited the spontaneous pancreatic tumor progression and prolonged the survival of KPPC;Lgals3-/- mice. Single-cell analysis revealed that genetic deletion of GAL3 altered the phenotypes of immune cells, cancer cells, and other cell populations. GAL3 deletion significantly enriched the antitumor myeloid cell subpopulation with high major histocompatibility complex class II expression. We also identified that GAL3 depletion resulted in CXCL12 upregulation, which could act as a potential compensating mechanism on GAL3 deficiency. Combined inhibition of the CXCL12-CXCR4 axis and GAL3 enhanced the efficacy of anti-PD-1 immunotherapy, leading to significantly inhibited PDAC progression. In addition, deletion of GAL3 also inhibited the basal/mesenchymal-like phenotype of pancreatic cancer cells. CONCLUSIONS: GAL3 promotes PDAC progression and immunosuppression via both cancer cell-intrinsic and immune-related mechanisms. Combined treatment targeting GAL3, CXCL12-CXCR4 axis, and PD-1 represents a novel therapeutic strategy for PDAC.

3.
Int J Antimicrob Agents ; 63(5): 107124, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38412930

RESUMO

For successful viral propagation within infected cells, the virus needs to overcome the cellular integrated stress response (ISR), triggered during viral infection, which, in turn, inhibits general protein translation. This paper reports a tactic employed by viruses to suppress the ISR by upregulating host cell polyribonucleotide nucleotidyltransferase 1 (PNPT1). The propagation of adenovirus, murine cytomegalovirus and hepatovirus within their respective host cells induces PNPT1 expression. Notably, when PNPT1 is knocked down, the propagation of all three viruses is prevented. Mechanistically, the inhibition of PNPT1 facilitates the relocation of mitochondrial double-stranded RNAs (mt-dsRNAs) to the cytoplasm, where they activate RNA-activated protein kinase (PKR). This activation leads to eukaryotic initiation factor 2α (eIF2α) phosphorylation, resulting in the suppression of translation. Furthermore, by scrutinizing the PNPT1 recognition element and screening 17,728 drugs and bioactive compounds approved by the US Food and Drug Administration, lanatoside C was identified as a potent PNPT1 inhibitor. This compound impedes the propagation of adenovirus, murine cytomegalovirus and hepatovirus, and suppresses production of the severe acute respiratory syndrome coronavirus-2 spike protein. These discoveries shed light on a novel strategy to impede pan-viral propagation by activating the host cell mt-dsRNA-PKR-eIF2α signalling axis.


Assuntos
eIF-2 Quinase , Humanos , Animais , eIF-2 Quinase/metabolismo , eIF-2 Quinase/antagonistas & inibidores , eIF-2 Quinase/genética , Antivirais/farmacologia , Muromegalovirus/fisiologia , Muromegalovirus/efeitos dos fármacos , Camundongos , Fator de Iniciação 2 em Eucariotos/metabolismo , Replicação Viral/efeitos dos fármacos , RNA de Cadeia Dupla/genética , Adenoviridae/genética , Adenoviridae/efeitos dos fármacos , Fosforilação , SARS-CoV-2/efeitos dos fármacos
4.
Cells ; 12(22)2023 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-37998349

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a devastating malignant disease with a dismal prognosis. In the past decades, a plethora of genetically engineered mouse models (GEMMs) with autochthonous pancreatic tumor development have greatly facilitated studies of pancreatic cancer. Commonly used GEMMs of PDAC often harbor the oncogenic KRAS driver mutation (KrasG12D), in combination with either p53 mutation by knock-in strategy (Trp53R172H) or p53 loss by conditional knockout (Trp53cKO) strategy, in pancreatic cell lineages. However, the systematic comparison of the tumor microenvironment between KrasG12D; Trp53R172H (KPmut) mouse models and KrasG12D; Trp53cKO (KPloss) mouse models is still lacking. In this study, we conducted cross-dataset single-cell RNA-sequencing (scRNA-seq) analyses to compare the pancreatic tumor microenvironment from KPmut mouse models and KPloss mouse models, especially focusing on the cell compositions and transcriptomic phenotypes of major cell types including cancer cells, B cells, T cells, granulocytes, myeloid cells, cancer-associated fibroblasts, and endothelial cells. We identified the similarities and differences between KPmut and KPloss mouse models, revealing the effects of p53 mutation and p53 loss on oncogenic KRAS-driven pancreatic tumor progression.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Camundongos , Carcinoma Ductal Pancreático/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Mutação/genética , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Análise de Célula Única , Microambiente Tumoral , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
5.
J Cell Mol Med ; 27(21): 3296-3312, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37551845

RESUMO

Finding effective treatments for cancer requires a thorough understanding of how it develops and progresses. Recent research has revealed the crucial role that Zinc and ring finger 2 (ZNRF2) play in the progression of non-small cell lung cancer (NSCLC) by controlling cell growth and death. However, a comprehensive analysis of ZNRF2's role in cancer as a whole has yet to be conducted. Our study sought to investigate the impact of ZNRF2 on diverse human tumours, as well as the molecular pathways involved, using databases such as TCGA (The Cancer Genome Atlas), GEO (Gene Expression Omnibus) and the Human Protein Atlas (HPA), as well as several bioinformatic tools. Our findings indicate that ZNRF2 is generally expressed at higher levels in tumours than in normal tissues, and in some cancers, its levels correlate positively with disease stage, potentially predicting a poor prognosis for patients. We also discovered genetic changes in ZNRF2 among cancer patients, as well as its relationship with cancer-related fibroblasts, endothelial cells and immune cell infiltration. Additionally, we explored potential molecular mechanisms of ZNRF2 in tumours, finding that it increases in hepatocellular carcinoma (HCC) tissues and that inhibiting its expression through ZNRF2 siRNA can limit HepG2 cell proliferation. Overall, our study provides a comprehensive overview of ZNRF2's oncogenic roles across various cancers.


Assuntos
Carcinoma Hepatocelular , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Hepáticas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Hepatocelular/genética , Zinco , Células Endoteliais/patologia , Neoplasias Pulmonares/genética , Neoplasias Hepáticas/genética , Ubiquitina-Proteína Ligases/genética
7.
Waste Manag ; 160: 69-79, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36791512

RESUMO

Compressibility is one of the important engineering properties of municipal solid waste (MSW) affecting the stability and functionality of a landfill. Although the correlations between MSW properties and compression parameters have been established, they either have low accuracy and small datasets or are only limited to a few specific landfills in a region. In this study, a new method using the initial global void ratio (e0*) of MSW to estimate the compression indices is developed based on a comprehensive MSW dataset. The dataset consists of 124 sets (91 laboratory and 33 field) of MSW compression results obtained from 44 studies in 13 countries with different income levels and climate conditions. We categorized MSW as a ternary mixture with biodegradable (B), reinforcing (R), and inert (I) fractions, and suggested average specific gravity values (Gs,B = 1.20, Gs,R = 1.07, and Gs,I = 2.64), respectively. The e0* values were calculated using the initial dry unit weight (γd,0) and ternary composition of MSW. The correlations between the e0* and the immediate compression index, secondary compression index induced by mechanical creep, and secondary compression index induced by bio-compression of MSW were evidently established. The results are applicable to the MSW with B = 0-79.2 %, R = 0-54.0 %, I = 2.8-100.0 %, and γd,0 = 2.0-14.2 kN/m3. A simple flowchart was established to estimate the compression indices and strains of MSW disposed on in landfills and dumpsites in countries with different income levels.


Assuntos
Eliminação de Resíduos , Resíduos Sólidos , Eliminação de Resíduos/métodos , Instalações de Eliminação de Resíduos , Pressão , Fenômenos Físicos
8.
Biomedicines ; 10(5)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35625931

RESUMO

Infiltration of polymorphonuclear neutrophils (PMNs) plays a central role in acute lung injury (ALI). The mechanisms governing PMN inflammatory responses, however, remain incompletely understood. Based on our recent study showing a non-metabolic role of pyruvate kinase type M2 (PKM2) in controlling PMN degranulation of secondary and tertiary granules and consequent chemotaxis, here we tested a hypothesis that Pkm2-deficient mice may resist ALI due to impaired PMN inflammatory responses. We found that PMN aerobic glycolysis controlled the degranulation of secondary and tertiary granules induced by fMLP and PMA. Compared to WT PMNs, Pkm2-deficient (Pkm2-/-) PMNs displayed significantly less capacity for fMLP- or PMA-induced degranulation of secondary and tertiary granules, ROS production, and transfilter migration. In line with this, myeloid-specific Pkm2-/- mice exhibited impaired zymosan-induced PMN infiltration in the peritoneal cavity. Employing an LPS-induced ALI mouse model, LPS-treated Pkm2-/- mice displayed significantly less infiltration of inflammatory PMNs in the alveolar space and a strong resistance to LPS-induced ALI. Our results thus reveal that PKM2 is required for PMN inflammatory responses and deletion of PKM2 in PMN leads to an impaired PMN function but protection against LPS-induced ALI.

9.
Oral Oncol ; 129: 105858, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35462155

RESUMO

OBJECTIVES: This study aims to investigate how human papillomavirus (HPV) affects the key gene in the biological behaviors of head and neck squamous cell carcinoma (HNSCC) that leads to better response to radiotherapy. MATERIALS AND METHODS: The expression of key gene CENPM was analyzed using The Cancer Genome Atlas (TCGA) HNSCC data and HPV positive and HPV negative HNSCC tumors and cells. Assays with siRNAs, CRISPR/Cas9-based models, Western blot, qRT-PCR, ChIP, etc., were used to explore how HPV affects CENPM and response to radiotherapy for HNSCC. RESULTS: CENPM occupies the hub in the HPV-related gene network. HPV-positive HNSCC showed higher level of CENPM expression comparing with HPV-negative HNSCC. HPV E5 has the most pronounced impact on CENPM (R = 0.44, p = 0.00081). This might result from the binding of transcription factor E2F1 to CENPM. We further found that inhibition of CENPM expression in HPV-positive HNSCC cell line SCC47 increased resistance to X-ray radiation by approximately 59% under 2 Gy irradiation, which may be resulted from a reduced proportion of mitotic cells. CONCLUSION: HPV E5 enhances CENPM expression by transcription factor E2F1 in HNSCC, which results in a radiosensitive profile in cell cycle redistribution of HNSCC. Thus, HPV infection in HNSCC provides profound evidence that underscores the magnitude of E2F1 control of CENPM expression illustrating the potential clinical benefit of CENPM examination for difficult-to-treat HPV-negative cancers.


Assuntos
Alphapapillomavirus , Proteínas de Ciclo Celular , Neoplasias de Cabeça e Pescoço , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Carcinoma de Células Escamosas de Cabeça e Pescoço , Alphapapillomavirus/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Papillomaviridae/metabolismo , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/radioterapia , Tolerância a Radiação/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Regulação para Cima
11.
Genome Biol ; 22(1): 104, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33849634

RESUMO

BACKGROUND: Although using a blockade of programmed death-ligand 1 (PD-L1) to enhance T cell immune responses shows great promise in tumor immunotherapy, the immune-checkpoint inhibition strategy is limited for patients with solid tumors. The mechanism and efficacy of such immune-checkpoint inhibition strategies in solid tumors remains unclear. RESULTS: Employing qRT-PCR, Sanger sequencing, and RNA BaseScope analysis, we show that human lung adenocarcinoma (LUAD) all produce a long non-coding RNA isoform of PD-L1 (PD-L1-lnc) by alternative splicing, regardless if the tumor is positive or negative for the protein PD-L1. Similar to PD-L1 mRNA, PD-L1-lnc in various lung adenocarcinoma cells is significantly upregulated by IFNγ. Both in vitro and in vivo studies demonstrate that PD-L1-lnc increases proliferation and invasion but decreases apoptosis of lung adenocarcinoma cells. Mechanistically, PD-L1-lnc promotes lung adenocarcinoma progression through directly binding to c-Myc and enhancing c-Myc transcriptional activity. CONCLUSIONS: In summary, the PD-L1 gene can generate a long non-coding RNA through alternative splicing to promote lung adenocarcinoma progression by enhancing c-Myc activity. Our results argue in favor of investigating PD-L1-lnc depletion in combination with PD-L1 blockade in lung cancer therapy.


Assuntos
Adenocarcinoma de Pulmão/genética , Processamento Alternativo , Antígeno B7-H1/genética , Proteínas Proto-Oncogênicas c-myc/genética , RNA Longo não Codificante/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Animais , Apoptose/genética , Antígeno B7-H1/química , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Interferon gama/metabolismo , Camundongos , Modelos Moleculares , Ligação Proteica , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Longo não Codificante/química , RNA Mensageiro , Transdução de Sinais , Relação Estrutura-Atividade
12.
Waste Manag ; 120: 183-192, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33310130

RESUMO

This study systematically investigated the acid washing of incineration bottom ash (IBA) of municipal solid waste, focusing on the removal and leaching of heavy metals (Pb, Zn, Cr, Cd, Cu, and Ni), as well as their pH-dependent behavior. A series of small-scale laboratory acid washing tests with different nitric acid concentrations and washing periods were conducted. The concentrations of metals in the washing water were measured to evaluate the metal removal efficiency. Then, one stage batch leaching test was conducted for washed IBA to evaluate the leaching reduction efficiency of washing. The results showed that the maximum metal removal efficiencies for Zn, Cu, and Ni (62-76%) were higher than those for Pb, Cr, and Cd (17-25%), which were reached at the highest acid addition for most of the metals. Increasing the washing period did not always increase the metal removal efficiency. The maximum leaching reduction efficiencies were higher for Zn, Cr, and Cu (93-98%) than those for Pb, Ni, and Cd (73-79%). Both washing and leaching processes showed a similar metal concentration-pH profile for each metal. For Pb, Zn, Cr, and Cd, the metal concentration-pH profile generally followed the metal hydroxide solubility versus pH curves. For Cu and Ni, the concentration of metal decreased with the increasing pH first and then kept at a stable concentration higher than the solubility of the hydroxide, indicating that Cu and Ni in the IBA washing water and leachates did not exist dominantly as their hydroxides.


Assuntos
Incineração , Metais Pesados , Cinza de Carvão , Concentração de Íons de Hidrogênio , Metais Pesados/análise , Resíduos Sólidos/análise
13.
Lab Chip ; 20(22): 4094-4105, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33089845

RESUMO

Isolation and analysis of circulating tumor cells (CTCs) from peripheral blood provides a potential way to detect and characterize cancer. Existing technologies to separate or capture CTCs from whole blood still have issues with sample throughput, separation efficiency or stable efficiency at different flow rates. Here, we proposed a new concept to capture rare CTCs from blood by integrating a triangular prism array-based capture apparatus with streamline-based focus-separation speed reduction design. The focus-separation design could focus and maintain CTCs, while removing a considerable proportion of liquid (98.9%) containing other blood cells to the outlet, therefore, a high CTC capture efficiency could be achieved in the trap arrays with a high initial flow rate. It is worth mentioning that the new design works well over a wide range of flow rates, so it does not require the stability of the flow rate. The results showed that this novel integrated chip can achieve a sample throughput from 5 to 40 mL h-1 with a stable and high CTC capture efficiency (up to 94.8%) and high purity (up to 4 log white blood cells/WBC depletion). The clinical experiment showed that CTCs including CTC clusters were detected in 11/11 (100.0%) patients (mean = 31 CTCs mL-1, median = 25 CTCs mL-1). In summary, our chip enriches and captures CTCs based on physical properties, and it is simple, cheap, fast, and efficient and has low requirements on flow rate, which is very suitable for large-scale application of CTC testing in clinics.


Assuntos
Técnicas Analíticas Microfluídicas , Células Neoplásicas Circulantes , Linhagem Celular Tumoral , Separação Celular , Humanos , Dispositivos Lab-On-A-Chip , Microfluídica
14.
Sci Rep ; 10(1): 10180, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32576895

RESUMO

CD47 deficient mice are resistant to dextran sulfate sodium (DSS)-induced experimental colitis. The underlying mechanism, however, remains incompletely understood. In this study, we characterized the role of CD47 in modulating homeostasis of gastrointestinal tract. We found that CD47 expression in both human and mouse intestinal epithelium was upregulated in colitic condition compared to that under normal condition. In line with this, CD47 deficiency protected mice from DSS-induced colitis. Analysis based on both intestinal organoid and cultured cell assays showed that CD47 deficiency accelerated intestinal epithelial cell proliferation and migration. Mechanistically, western blot and functional assays indicated that CD47 deficiency promoting mouse intestinal epithelial cell proliferation and migration follow cell injury is likely through upregulating expression of four Yamanaka transcriptional factors Oct4, Sox2, Klf4 and c-Myc (OSKM in abbreviation). Our studies thus reveal CD47 as a negative regulator in intestinal epithelial cell renewal during colitis through downregulating OSKM transcriptional factors.


Assuntos
Antígeno CD47/metabolismo , Autorrenovação Celular/fisiologia , Colite/metabolismo , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/fisiologia , Animais , Apoptose/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Células Cultivadas , Colite/induzido quimicamente , Sulfato de Dextrana/farmacologia , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células HT29 , Homeostase/fisiologia , Humanos , Fator 4 Semelhante a Kruppel , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/fisiologia , Regulação para Cima/fisiologia
15.
Nucleic Acids Res ; 48(13): 7027-7040, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32542340

RESUMO

Methylation of miRNAs at the 2'-hydroxyl group on the ribose at 3'-end (2'-O-methylation, 2'Ome) is critical for miRNA function in plants and Drosophila. Whether this methylation phenomenon exists for mammalian miRNA remains unknown. Through LC-MS/MS analysis, we discover that majority of miR-21-5p isolated from human non-small cell lung cancer (NSCLC) tissue possesses 3'-terminal 2'Ome. Predominant 3'-terminal 2'Ome of miR-21-5p in cancer tissue is confirmed by qRT-PCR and northern blot after oxidation/ß-elimination procedure. Cancerous and the paired non-cancerous lung tissue miRNAs display different pattern of 3'-terminal 2'Ome. We further identify HENMT1 as the methyltransferase responsible for 3'-terminal 2'Ome of mammalian miRNAs. Compared to non-methylated miR-21-5p, methylated miR-21-5p is more resistant to digestion by 3'→5' exoribonuclease polyribonucleotide nucleotidyltransferase 1 (PNPT1) and has higher affinity to Argonaute-2, which may contribute to its higher stability and stronger inhibition on programmed cell death protein 4 (PDCD4) translation, respectively. Our findings reveal HENMT1-mediated 3'-terminal 2'Ome of mammalian miRNAs and highlight its role in enhancing miRNA's stability and function.


Assuntos
Proteínas Argonautas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Metiltransferases/metabolismo , MicroRNAs/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Exorribonucleases/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Metilação , Proteínas de Ligação a RNA/metabolismo
16.
Waste Manag ; 104: 213-219, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31982784

RESUMO

Incineration bottom ash (IBA) of municipal solid waste is a potential construction material for civil engineering. However, the possible leaching of trace heavy metals from IBA is a concern. Water washing is a simple and economic method to remove heavy metals from IBA. In order to optimize the water washing process of IBA, this study investigated the pH evolution during washing and its effect on the removal of several heavy metals, including lead (Pb), zinc (Zn), nickel (Ni), cadmium (Cd), copper (Cu), and chromium (Cr), through a small-scale laboratory experiment. The results show that the pH of washing water increases quickly in the first 1-3 h mainly due to the dissolution of quicklime and portlandite, and then decreases with the increasing of washing time might be due to consumption of OH- by precipitation of metal hydroxides. The concentrations of Pb, Zn, and Ni in the washing water show a similar trend as that of the pH with time, whilst the concentrations of Cd, Cu, and Cr increase with the increase of washing time. Hence, the optimum washing time should be determined accordingly based on the most concerned metal(s), as well as the pH evaluation during washing.


Assuntos
Incineração , Metais Pesados , Cinza de Carvão , Concentração de Íons de Hidrogênio , Água
17.
Sci Rep ; 9(1): 13378, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31527605

RESUMO

We present and demonstrate an efficient method for the reconstruction of profiles acquired by multifocal structured illumination microscopy (MSIM) utilizing few raw images. Firstly, we propose a method to produce nine raw multifocal images with enhanced modulation depth to accomplish the uniform illumination of the sample. Then, combing with the parameter of the arrays, we perform the standard construct reconstruction procedure of structured illumination microscopy (SIM) row by row and column by column. Finally, we combine these restored images together to obtain the final image with enhanced resolution and good contrast. Based on theoretical analysis and numerical simulations, this method shows great potential in the field of the image reconstruction of MSIM data.

18.
Mucosal Immunol ; 12(6): 1280-1290, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31462699

RESUMO

The pyruvate kinase M2 (PKM2)-mediated aerobic glycolysis has been shown to play a critical role in promoting cell survival and proliferation. However, little is known about the function of intestinal epithelial PKM2 in intestine homeostasis. Here we investigate whether and how intestinal epithelial PKM2 modulates the morphology and function of the adult intestine in experimental colitis. Analyzing colonoscopic biopsies from Crohn's disease and ulcerative colitis patients, we found significantly decreased level of intestinal epithelial PKM2 in patients compared to that in non-inflamed tissues. Similar reduction of intestinal epithelial PKM2 was observed in mice with dextran sulfate sodium-induced colitis. Moreover, intestinal epithelial-specific PKM2-knockout (Pkm2-/-) mice displayed more severe intestinal inflammation, as evidenced by a shortened colon, disruption of epithelial tight junctions, an increase in inflammatory cytokine levels, and immune cell infiltration, when compared to wild-type mice. Gene profiling, western blot, and function analyses indicated that cell survival signals, particularly the Wnt/ß-catenin pathways, were associated with PKM2 activity. Increasing mouse intestinal epithelial PKM2 expression via delivery of a PKM2-expressing plasmid attenuated experimental colitis. In conclusion, our studies demonstrate that intestinal epithelial PKM2 increases cell survival and wound healing under the colitic condition via activating the Wnt/ß-catenin signaling.


Assuntos
Colite Ulcerativa/enzimologia , Colite Ulcerativa/prevenção & controle , Colo/enzimologia , Mucosa Intestinal/enzimologia , Piruvato Quinase/metabolismo , Via de Sinalização Wnt , Animais , Proteínas de Transporte/metabolismo , Estudos de Casos e Controles , Linhagem Celular , Sobrevivência Celular , Colite Ulcerativa/genética , Colite Ulcerativa/patologia , Colo/patologia , Doença de Crohn/enzimologia , Doença de Crohn/patologia , Modelos Animais de Doenças , Humanos , Mucosa Intestinal/patologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Piruvato Quinase/deficiência , Piruvato Quinase/genética , Hormônios Tireóideos/metabolismo , Cicatrização , Proteínas de Ligação a Hormônio da Tireoide
19.
J Neurovirol ; 25(4): 457-463, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31140131

RESUMO

Varicella-zoster virus (VZV) leads to chicken pox on primary infection and herpes zoster on reactivation. Recent studies suggest that microRNA2911 (MIR2911), honeysuckle (HS)-encoded atypical microRNA, has potential as a therapeutic agent against influenza and EV71 virus infections. Here, we report that MIR2911 directly inhibits VZV replication by targeting the IE62 gene. The luciferase reporter assay and bioinformatics prediction revealed that MIR2911 could target the IE62 gene of VZV. The VZV-encoded IE62 protein expression was inhibited significantly by synthetic MIR2911, while the expression of the mutants, whose MIR2911-binding sites were modified, was not inhibited. The RNA extracted from HS decoction and synthetic MIR2911 considerably suppressed VZV infection. However, it did not influence viral replication of a mutant virus with alterations in the nucleotide sequences of IE62. At the same time, the RNA extracted from HS decoction treated with the anti-MIR2911 antagomir could not inhibit the VZV replication, demonstrating that VZV replication was specifically and sufficiently inhibited by MIR2911. These results indicated that, by targeting the IE62 gene, MIR2911 may effectively inhibit VZV replication. Our results also suggest a potential novel strategy for the treatment and prevention of diseases caused by VZV infection.


Assuntos
Antivirais/farmacologia , Herpesvirus Humano 3/efeitos dos fármacos , Proteínas Imediatamente Precoces/genética , Lonicera/química , MicroRNAs/genética , RNA de Plantas/genética , Transativadores/genética , Proteínas do Envelope Viral/genética , Antagomirs/genética , Antagomirs/metabolismo , Antivirais/isolamento & purificação , Antivirais/metabolismo , Linhagem Celular , Medicamentos de Ervas Chinesas/química , Embrião de Mamíferos , Fibroblastos/efeitos dos fármacos , Fibroblastos/virologia , Regulação da Expressão Gênica , Genes Reporter , Herpesvirus Humano 3/genética , Herpesvirus Humano 3/metabolismo , Humanos , Proteínas Imediatamente Precoces/antagonistas & inibidores , Proteínas Imediatamente Precoces/metabolismo , Luciferases/genética , Luciferases/metabolismo , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Mutação , RNA de Plantas/antagonistas & inibidores , RNA de Plantas/metabolismo , Transativadores/antagonistas & inibidores , Transativadores/metabolismo , Proteínas do Envelope Viral/antagonistas & inibidores , Proteínas do Envelope Viral/metabolismo , Replicação Viral
20.
J Cell Biochem ; 119(12): 9974-9985, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30171729

RESUMO

Although emerging evidence has revealed that microRNAs (miRNAs) dysregulation contribute to carcinogenesis, the mechanism underlying their roles in renal cell carcinoma (RCC) is unclear. The purpose of the current study was to analyze the association of miR-200a-3p expression with RCC and to understand potential novel target genes, functions and mechanisms of miR-200a-3p in RCC. MiR-200a-3p expression levels were first measured by quantitative real-time polymerase chain reaction and in situ hybridization in pairs of RCC tissue samples. Next, the potential miR-200a-3p target gene was analyzed using a combination of computer-aided algorithms, luciferase reporter assays and Western blot analysis. Finally, the biological roles of miR-200a-3p in RCC tumorigenesis were investigated both in vitro by 5-ethynyl-20-deoxyuridine, apoptosis assay and transwell assay, as well as in vivo using a xenograft mouse model. Our results demonstrated that miR-200a-3p was remarkably downregulated in RCC tissues compared with normal adjacent tissue, and CBL is a direct target of miR-200a-3p. An inverse correlation between miR-200a-3p and CBL was observed in RCC tissue samples. Mechanistic investigations revealed that ectopic expression of miR-200a-3p in RCC cell lines suppressed cell proliferation and migration and enforced cell apoptosis by directly inhibiting CBL in vitro and in vivo, whereas silencing miR-200a-3p resulted in the opposite effects. Additionally, overexpressing CBL abolished the effects induced by miR-200a-3p overexpression. Taken together, our results show that the miR-200a-3p/CBL regulation axis is a novel mechanism underlying RCC pathogenesis and may serve as a candidate biomarker and therapeutic target in RCC.


Assuntos
Carcinoma de Células Renais/genética , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/genética , MicroRNAs/genética , Animais , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/fisiopatologia , Linhagem Celular Tumoral , Humanos , Neoplasias Renais/metabolismo , Neoplasias Renais/fisiopatologia , Camundongos , Camundongos Nus , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-cbl/genética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...