Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 141: 106842, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37769523

RESUMO

Ubiquitin-specific protease 22 (USP22) plays a prominent role in tumor development, invasion, metastasis and immune reprogramming, which has been proposed as a potential therapeutic target for cancer. Herein, we employed a structure-based discovery and biological evaluation and discovered that Rottlerin (IC50 = 2.53 µM) and Morusin (IC50 = 8.29 µM) and as selective and potent USP22 inhibitors. Treatment of HCT116 cells and A375 cells with each of the two compounds resulted in increased monoubiquitination of histones H2A and H2B, as well as reduced protein expression levels of Sirt1 and PD-L1, all of which are known as USP22 substrates. Additionally, our study demonstrated that the administration of Rottlerin or Morusin resulted in an increase H2Bub levels, while simultaneously reducing the expression of Sirt1 and PD-L1 in a manner dependent on USP22. Furthermore, Rottlerin and Morusin were found to enhance the degradation of PD-L1 and Sirt1, as well as increase the polyubiquitination of endogenous PD-L1 and Sirt1 in HCT116 cells. Moreover, in an in vivo syngeneic tumor model, Rottlerin and Morusin exhibited potent antitumor activity, which was accompanied by an enhanced infiltration of T cells into the tumor tissues. Using in-depth molecular dynamics (MD) and binding free energy calculation, conserved residue Leu475 and non-conserved residue Arg419 were proven to be crucial for the binding affinity and inhibitory function of USP22 inhibitors. In summary, our study established a highly efficient approach for USP22-specific inhibitor discovery, which lead to identification of two selective and potent USP22 inhibitors as potential drugs in anticancer therapy.


Assuntos
Antígeno B7-H1 , Sirtuína 1 , Humanos , Sirtuína 1/metabolismo , Benzopiranos , Bioensaio
2.
Parasit Vectors ; 16(1): 128, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37060070

RESUMO

BACKGROUND: Mosquitoes are vectors of many pathogens, such as malaria, dengue virus, yellow fever virus, filaria and Japanese encephalitis virus. Wolbachia are capable of inducing a wide range of reproductive abnormalities in their hosts, such as cytoplasmic incompatibility. Wolbachia has been proposed as a tool to modify mosquitoes that are resistant to pathogen infection as an alternative vector control strategy. This study aimed to determine natural Wolbachia infections in different mosquito species across Hainan Province, China. METHODS: Adult mosquitoes were collected using light traps, human landing catches and aspirators in five areas in Hainan Province from May 2020 to November 2021. Species were identified based on morphological characteristics, species-specific PCR and DNA barcoding of cox1 assays. Molecular classification of species and phylogenetic analyses of Wolbachia infections were conducted based on the sequences from PCR products of cox1, wsp, 16S rRNA and FtsZ gene segments. RESULTS: A total of 413 female adult mosquitoes representing 15 species were identified molecularly and analyzed. Four mosquito species (Aedes albopictus, Culex quinquefasciatus, Armigeres subalbatus and Culex gelidus) were positive for Wolbachia infection. The overall Wolbachia infection rate for all mosquitoes tested in this study was 36.1% but varied among species. Wolbachia types A, B and mixed infections of A × B were detected in Ae. albopictus mosquitoes. A total of five wsp haplotypes, six FtsZ haplotypes and six 16S rRNA haplotypes were detected from Wolbachia infections. Phylogenetic tree analysis of wsp sequences classified them into three groups (type A, B and C) of Wolbachia strains compared to two groups each for FtsZ and 16S rRNA sequences. A novel type C Wolbachia strain was detected in Cx. gelidus by both single locus wsp gene and the combination of three genes. CONCLUSION: Our study revealed the prevalence and distribution of Wolbachia in mosquitoes from Hainan Province, China. Knowledge of the prevalence and diversity of Wolbachia strains in local mosquito populations will provide part of the baseline information required for current and future Wolbachia-based vector control approaches to be conducted in Hainan Province.


Assuntos
Aedes , Culex , Culicidae , Wolbachia , Animais , Humanos , Wolbachia/genética , RNA Ribossômico 16S/genética , Filogenia , Mosquitos Vetores/genética , Aedes/genética , Culex/genética , China/epidemiologia
3.
PLoS One ; 17(8): e0271335, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35930553

RESUMO

Hippeastrum is a genus of ornamental plants with large, brightly colored flowers. Due to the very high seed-setting rate of the hybridization of Hippeastrum, the large population of hybrid progeny and the existence of superparent inheritance, it is difficult to trace the origin of the varieties collected from the market during breeding. In this study, we analyzed the chloroplast genomes of Hippeastrum 'Milady', H. alberti, and H. reticulatum using the Illumina NovaSeq sequencing platform and generated full-length sequences of 158,067, 158,067, and 158,522 bp, respectively. All three genomes had the typical tetrad structure. The large single copy, small single copy, and inverted repeat regions of H. reticulatum were observed to be respectively 277, 138, and 20 bp longer than the corresponding regions of H. 'Milady' and H. alberti. The results of comparative analysis of simple sequence repeats (SSRs), Ka/Ks ratios, codon preferences, and complete sequences of chloroplasts of these three taxa and 14 other plant species were as follows. First, the chloroplast genomes of H. 'Milady', H. alberti, and H. reticulatum contain 209, 209, and 211 SSR sites, respectively, most of which (123, 123, and 122, respectively) are single nucleotide repeats. Second, leucine, arginine, and serine are the most frequently used amino acids in the three chloroplast genomes. Third, H. 'Milady', H. alberti, and H. reticulatum are more closely related to Lycoris and Narcissus than to Allium and Agapanthus. Our results will provide information on the study of origins or relatedness of native species, and the identification of cultivars.


Assuntos
Amaryllidaceae , Genoma de Cloroplastos , Cloroplastos/genética , Repetições de Microssatélites/genética , Filogenia , Melhoramento Vegetal
4.
Mitochondrial DNA B Resour ; 6(1): 161-163, 2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33537428

RESUMO

Camellia rhytidophylla is an endangered plant with economic value. Using Illumina sequencing, the chloroplast genome of C. rhytidophylla was sequenced and analyzed in this study. The complete chloroplast genome is 157,073 bp in length, which consisted of a pair of inverted repeat regions of 26,055 bp (IRa and IRb) separated by a large single-copy region (LSC) of 86,680 bp and a small single-copy region (SSC) of 18,283 bp. The C. rhytidophylla chloroplast genome encodes 135 genes, including 87 protein-coding genes, 37 tRNA genes, 8 rRNA genes, and 3 pseudogenes. Sequence comparison analysis with the chloroplast sequences of 28 other Camellia plants found that C. rhytidophylla had the closest relationship with C. szechuanensis. This study provides a theoretical basis for the analysis of the distant relationship of Camellia.

5.
Mitochondrial DNA B Resour ; 6(1): 247-249, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33553635

RESUMO

Camellia chuongtsoensis is an evergreen shrub with a single-petaled flower and golden yellow color. The complete chloroplast genome of C. chuongtsoensis was sequenced and analyzed in this study by Illumina sequencing. The chloroplast genome is 156,504 bp in length with a quadripartite structure containing a large single copy (LSC) region of 86,215 bp, a small single copy (SSC) region of 18,253 bp, and a pair of inverted repeat regions of 26,018 bp (IRa and IRb). The chloroplast genome of C. chuongtsoensis encodes 135 genes, comprising 87 protein-coding genes, 37 tRNA genes, 8 rRNA genes, and 3 pseudogenes.

6.
Mitochondrial DNA B Resour ; 5(4): 3840-3842, 2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33426296

RESUMO

Camellia fraterna belongs to the genus Camellia in the family Theaceae. We sequenced and analyzed the complete chloroplast genome of C. fraterna by Illumina sequencing in this study. The full length of the complete chloroplast genome is 156,902 bp, containing a pair of inverted repeat regions of 26,030 bp (IRa and IRb) separated by a large single-copy (LSC) region of 86,583 bp and a small single-copy (SSC) region of 18,259 bp. The C. fraterna chloroplast genome encodes 135 genes, comprising 87 protein-coding genes, 37 tRNA genes, eight rRNA genes, and three pseudogenes. This study will be useful for further study on genetic diversity and molecular breeding.

7.
Sci Total Environ ; 543(Pt A): 197-205, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26580742

RESUMO

Pollution caused by residual antibiotics is a worldwide environmental issue. Antibiotic residues often occur in aquatic ecosystems, posing threats to the health of aquatic organisms. The effects of antibiotic residues on the growth of crop plants and on human health are reasonably well known. However, less is known about antibiotic effects on wetland plants. Therefore, we studied the response and tolerance of ten clonal wetland plants grown in soil spiked with sulfadiazine at 10 mg kg(-1) (an environmentally relevant concentration) and 100 mg kg(-1). At 10 mg kg(-1), ramet number was the least affected trait, while root number was the most affected among plant species. Plant shoot and total biomass were reduced in all species except in Cyperus malaccensis var. brevifolius and Panicum repens. Chlorophyll content was reduced in Alocasia macrorrhiza, Saururus chinensis, and Commelina diffusa. In general, Panicum paludosum and C. malaccensis var. brevifolius showed the least reduction of growth parameters, whereas growth of both A. macrorrhiza and S. chinensis was severely reduced. At 100 mg kg(-1), negative responses occurred in all species. Comprehensive tolerance analysis revealed that P. paludosum and C. malaccensis var. brevifolius were the species most resistant to sulfadiazine. These species are potential candidates for sulfadiazine polluted wetland restoration. A. macrorrhiza and S. chinensis were the most susceptible species and they should be protected from sulfadiazine pollution. Relative plant shoot biomass and height were the most useful indicators for evaluating plant tolerance to sulfadiazine. Plant tolerance to sulfadiazine was associated with the differences of plants in height and shoot biomass.


Assuntos
Antibacterianos/toxicidade , Organismos Aquáticos/crescimento & desenvolvimento , Sulfadiazina/toxicidade , Poluentes Químicos da Água/toxicidade , Áreas Alagadas , Organismos Aquáticos/efeitos dos fármacos , Biodegradação Ambiental , China , Clorofila/metabolismo , Ecossistema , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...