Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Commun Adhes ; 13(3): 171-83, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16798616

RESUMO

The Arg-Gly-Asp (RGD) tripeptide unit is a cell-cell and cell-extracellular matrix recognition sequence of some integrins that is found within several extracellular matrix glycoproteins and dendroaspin, a disintegrin-like venom protein isolated from the snake venom of the Dendroaspis jamsonii. In the present study, the RGD motif in dendroaspin was substituted by Lys-Gly-Asp (KGD), His-Gly-Asp (HGD), Gln-Gly-Asp (QGD) and Ala-Gly-Asp (AGD) denoted as KGD-den, HGD-den, QGD-den and AGD-den, respectively. Each of the mutants exhibited activity as inhibitor of ADP-induced platelet aggregation with IC50 values of 0.26, 2.5, 6, and 17 microM for KGD-den, HGD-den, QGD-den, and AGD-den, respectively, as compared with RGD-den (IC50 = 0.18 microM). Interestingly, HGD-den was approx. two-fold more potent and a more selective inhibitor than either the KGD-den or QGD-den counterpart at blocking A375-SM human melanoma cell adhesion to fibrinogen (beta3-mediated). KGD-den, HGD-den, and QGD-den were preferentially antagonists of A375-SM human melanoma cell adhesion to fibrinogen rather than to fibronectin (alpha5beta1-, beta3-mediated). Both HGD-den and KGD-den were equipotent as inhibitors of human erythroleukaemia (HEL) cell adhesion to fibrinogen (IC50 = 0.15 microM) and also preferential inhibitors of HEL cell adhesion to fibrinogen (beta3 and beta1-mediated) rather than to fibronectin. These findings show that the presence of the arginine within the RGD motif of dendroaspin is not obligatory and substitution of this residue can modulate inhibitory potency and integrin binding selectivity.


Assuntos
Substituição de Aminoácidos/genética , Arginina/genética , Venenos Elapídicos/farmacologia , Proteínas Mutantes/farmacologia , Neurotoxinas/farmacologia , Oligopeptídeos/genética , Agregação Plaquetária/efeitos dos fármacos , Difosfato de Adenosina/farmacologia , Motivos de Aminoácidos , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Venenos Elapídicos/isolamento & purificação , Elapidae , Fibrinogênio/metabolismo , Fibronectinas/metabolismo , Humanos , Peso Molecular , Proteínas Mutantes/isolamento & purificação , Mutação/genética
2.
Nucleic Acids Res ; 32(22): e188, 2004 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-15616155

RESUMO

MicroRNAs (miRNAs) are believed to play important roles in developmental and other cellular processes by hybridizing to complementary target mRNA transcripts. This results in either cleavage of the hybridized transcript or negative regulation of translation. Little is known about the regulation or pattern of miRNA expression. The predicted presence of numerous miRNA sequences in higher eukaryotes makes it highly likely that the expression levels of individual miRNA molecules themselves should play an important role in regulating multiple cellular processes. Therefore, determining the pattern of global miRNA expression levels in mammals and other higher eukaryotes is essential to help understand both the mechanism of miRNA transcriptional regulation as well as to help identify miRNA regulated gene expression. Here, we describe a novel method to detect global processed miRNA expression levels in higher eukaryotes, including human, mouse and rats, by using a high-density oligonucleotide array. Array results have been validated by subsequent confirmation of mir expression using northern-blot analysis. Major differences in mir expression have been detected in samples from diverse sources, suggesting highly regulated mir expression, and specific gene regulatory functions for individual miRNA transcripts. For example, five different miRNAs were found to be preferentially expressed in human kidney compared with other human tissues. Comparative analysis of surrounding genomic sequences of the kidney-specific miRNA clusters revealed the occurrence of specific transcription factor binding sites located in conserved phylogenetic foot prints, suggesting that these may be involved in regulating mir expression in kidney.


Assuntos
Perfilação da Expressão Gênica/métodos , MicroRNAs/análise , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Animais , Northern Blotting , Sequência Conservada , Genômica , Humanos , Rim/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Especificidade de Órgãos , Ratos
3.
J Biol Chem ; 279(50): 52361-5, 2004 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-15504739

RESUMO

MicroRNAs (miRNAs) are endogenously expressed 20-24 nucleotide RNAs thought to repress protein translation through binding to a target mRNA (1-3). Only a few of the more than 250 predicted human miRNAs have been assigned any biological function. In an effort to uncover miRNAs important during adipocyte differentiation, antisense oligonucleotides (ASOs) targeting 86 human miRNAs were transfected into cultured human pre-adipocytes, and their ability to modulate adipocyte differentiation was evaluated. Expression of 254 miRNAs in differentiating adipocytes was also examined on a miRNA microarray. Here we report that the combination of expression data and functional assay results identified a role for miR-143 in adipocyte differentiation. miR-143 levels increased in differentiating adipocytes, and inhibition of miR-143 effectively inhibited adipocyte differentiation. In addition, protein levels of the proposed miR-143 target ERK5 (4) were higher in ASO-treated adipocytes. These results demonstrate that miR-143 is involved in adipocyte differentiation and may act through target gene ERK5.


Assuntos
Adipócitos/citologia , Adipócitos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Adipócitos/efeitos dos fármacos , Sequência de Bases , Diferenciação Celular , Células Cultivadas , Sondas de DNA/genética , Humanos , MicroRNAs/antagonistas & inibidores , Oligodesoxirribonucleotídeos Antissenso/genética , Oligodesoxirribonucleotídeos Antissenso/farmacologia , Análise de Sequência com Séries de Oligonucleotídeos , Transfecção
4.
Mol Cell Biol ; 24(4): 1531-9, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14749370

RESUMO

Exposure of mammalian cells to UV irradiation leads to activation of the c-Jun NH(2)-terminal protein kinase (JNK) pathway, which is associated with cell apoptosis. However, the molecular mechanism for JNK activation by UV exposure is not fully understood. We show here an essential role of a multisubstrate adapter, Gab1, in this signaling cascade. Gab1-deficient mouse fibroblast cells were defective in induction of JNK activity by UV exposure or heat shock, and this defect was rescued by reintroduction of Gab1 into Gab1(-/-) cells. Consistently, Gab1(-/-) cells displayed reduced caspase 3 induction and apoptotic cell death in response to UV irradiation. Gab1 was constitutively complexed with JNK and became tyrosine phosphorylated in UV-irradiated cells. Genetic and pharmaceutical analyses suggest the involvement of c-Met and the Src family tyrosine kinases in mediating UV-induced Gab1 phosphorylation as well as JNK activation. In aggregate, these observations identify a new function of Gab1 in the response of mammalian cells to UV light.


Assuntos
Apoptose/efeitos da radiação , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfoproteínas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Caspase 3 , Caspases/metabolismo , Ativação Enzimática/efeitos da radiação , Fator de Crescimento Epidérmico/farmacologia , Fibroblastos , Deleção de Genes , Resposta ao Choque Térmico , Proteínas Quinases JNK Ativadas por Mitógeno , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Fosfoproteínas/genética , Fosforilação/efeitos da radiação , Fosfotirosina/metabolismo , Ligação Proteica , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...