Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37373246

RESUMO

The aim of this study is to explore the potential targets and molecular mechanism of matrine (MAT) against aging. Bioinformatic-based network pharmacology was used to investigate the aging-related targets and MAT-treated targets. A total of 193 potential genes of MAT against aging were obtained and then the top 10 key genes (cyclin D1, cyclin-dependent kinase 1, Cyclin A2, androgen receptor, Poly [ADP-ribose] polymerase-1 (PARP1), histone-lysine N-methyltransferase, albumin, mammalian target of rapamycin, histone deacetylase 2, and matrix metalloproteinase 9) were filtered by the molecular complex detection, maximal clique centrality (MMC) algorithm, and degree. The Metascape tool was used for analyzing biological processes and pathways of the top 10 key genes. The main biological processes were response to an inorganic substance and cellular response to chemical stress (including cellular response to oxidative stress). The major pathways were involved in cellular senescence and the cell cycle. After an analysis of major biological processes and pathways, it appears that PARP1/nicotinamide adenine dinucleotide (NAD+)-mediated cellular senescence may play an important role in MAT against aging. Molecular docking, molecular dynamics simulation, and in vivo study were used for further investigation. MAT could interact with the cavity of the PARP1 protein with the binding energy at -8.5 kcal/mol. Results from molecular dynamics simulations showed that the PARP1-MAT complex was more stable than PARP1 alone and that the binding-free energy of the PARP1-MAT complex was -15.962 kcal/mol. The in vivo study showed that MAT could significantly increase the NAD+ level of the liver of d-gal-induced aging mice. Therefore, MAT could interfere with aging through the PARP1/NAD+-mediated cellular senescence signaling pathway.


Assuntos
Matrinas , NAD , Camundongos , Animais , NAD/metabolismo , Simulação de Acoplamento Molecular , Poli(ADP-Ribose) Polimerase-1/metabolismo , Envelhecimento , Estresse Oxidativo , Mamíferos/metabolismo
2.
Chemosphere ; 306: 135550, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35780989

RESUMO

Extracellular polymeric substances (EPS) are widely observed in aquatic ecosystems, however the potential function of EPS on metal sequestration in mangrove wetlands is unclear. Thus, an ecological restoration area (including Sonneratia apetala, Kandelia obovata and unvegetated mudflat) was employed to assess the effect of mangrove reforestation on metal sequestration and the underlying roles played by EPS. The results showed that mangrove restoration directly promoted metal accumulation (e.g., Cr, Cu, Ni, Pb, and Zn) in sediments. However, alleviated metal bioavailability was detected after mangrove reforestation. The changes in metal accumulation and bioavailability were highly correlated with EPS and microbial composition. Mangrove restoration (especially for K. obovata reforestation) also significantly promoted EPS production, in which multiple metal-chelating functional groups (e.g., hydroxyl, carboxyl, and imino) were identified by Fourier infrared spectra. Moreover, the contents of EPS were positively correlated with metal accumulation but negatively correlated with metal bioavailability. The present data further illustrated that the enhancements of Gammaproteobacteria, Bacteroidia, Desulfobulbia, and Desulfobacteria might be important for EPS production. In summary, this is the first study to reveal that the presence of artificial mangroves might act as an efficient barrier in metal sequestration and immobilization by enhancing inherent microbial EPS.


Assuntos
Metais Pesados , Rhizophoraceae , China , Ecossistema , Matriz Extracelular de Substâncias Poliméricas/química , Sedimentos Geológicos , Metais Pesados/análise , Áreas Alagadas
3.
Sci Total Environ ; 811: 152369, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-34919933

RESUMO

Coastal erosion will aggravate the loss of shorelines and threaten the safety of coastal engineering facilities. Mangrove is often considered as an efficient coastal guard; however the mechanisms involved in anti-scouribility ascribed to mangrove are still poorly understood. Thus, two artificial mangrove forests (including exotic Sonneratia apetala and native Kandelia obovata) and an unvegetated mudflat control were selected to explore the potential function of microbial extracellular polymeric substance (EPS) on the anti-scouribility of the sediments. A cohesive strength meter was used for the analysis of anti-scouribility, while a sequential extraction and 16S high-throughput sequencing were employed to evaluate the changes in EPS and microbial community driven by mangrove restoration. Principal component, redundancy, and two-matrix correlation heatmap analyses were performed for the analyses of the correlations among shear stress, EPS, microbes, and soil properties. The results showed an obvious enhancement of anti-scouribility after mangrove restoration. Compared to those of unvegetated mudflat, shear stress increased from 1.94 N/m2 to 3.26 and 4.93 N/m2 in the sediments of S. apetala and K. obovata stands, respectively. Mangrove restoration also promoted EPS content in the sediments, irrespective of EPS components and sub-fractions. Both extracellular protein and polysaccharide were found to be positively correlated with anti-scouribility. Coinciding with increased anti-scouribility and EPS, increased bacterial abundances were also detected in the sediments after mangrove restoration (especially K. obovata), whereas Proteobacteria and Bacteroides may be important and influential for EPS secretion and anti-scouribility promotion. Nevertheless, increased total organic carbon, total nitrogen and total phosphorus induced by mangrove restoration may also partially contribute to improvement of anti-scouribility. In conclusion, this is the first study to provide evidence for a link between mangrove restoration and increased EPS which improve resistance to scouring. The present study provides a novel perspective on the revealing of the function of mangrove on erosion mitigation.


Assuntos
Microbiota , Rhizophoraceae , Matriz Extracelular de Substâncias Poliméricas , Solo , Áreas Alagadas
4.
Biochem Biophys Res Commun ; 585: 42-47, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34784550

RESUMO

The bacterium Gordonia sp. SCSIO19801, which could effectively utilize phenanthrene as the sole carbon source, was isolated from the seawater of the South China Sea. Its biodegradation characteristics, whole genome sequence, and biodegradation pathway were investigated. The phenanthrene biodegradation process of Gordonia sp. SCSIO19801 was estimated to be a first-order kinetic model with a k value of 0.26/day. Based on the identification of metabolites, utilization of probable intermediates, and genomics analysis of related genes, the degradation of phenanthrene by Gordonia sp. SCSIO19801 was proposed to occur via the salicylate metabolic pathway. This is the first report of a phenanthrene degradation pathway in Gordonia species. In addition, the Gordonia sp. SCSIO19801 could use other aromatic compounds as the sole source of carbon and energy. These characteristics indicate that Gordonia sp. SCSIO19801 can be utilized for developing effective methods for the biodegradation of petroleum hydrocarbons in marine environments.


Assuntos
Actinobacteria/genética , Actinobacteria/metabolismo , Genoma Bacteriano/genética , Redes e Vias Metabólicas , Fenantrenos/metabolismo , Actinobacteria/classificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Carbono/metabolismo , Genômica/métodos , Cinética , Modelos Químicos , Estrutura Molecular , Fenantrenos/química , Filogenia , RNA Ribossômico 16S/genética , Salicilatos/metabolismo , Análise de Sequência de DNA/métodos
5.
Ecotoxicology ; 30(5): 919-928, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33830383

RESUMO

Seagrasses constitute a significant part of coral reef ecosystems, representing high primary productivity and one of the most important coastal habitats in marine ecosystems. Though seagrasses possess irreplaceable ecological services to the marine environment, taxonomical ambiguity still exists due to similar morphological characters and phenotypic plasticity. As an emerging technology, DNA barcoding can effectively identify cryptic species using a short orthologous DNA region. In this study, we collected samples from five different locations (Daya Bay, Xincun Bay, Sanya Bay, Xisha Islands, and Nansha Islands), and three seagrass species Cymodocea rotundata, Thalassia hemprichii and Halophila ovalis was evaluated. Moreover, ITS, matK and rbcL genes were used as DNA barcodes. The results indicated that single ITS and concatenated ITS/matK/rbcL both conducted better species resolution than single matK and rbcL. Nevertheless, single ITS was more convenient. Furthermore, in all the four topology trees, three species resolved as 3 clusters as well H. ovalis and T. hemprichii grouped as sister clade. In the meantime, differentiation lay in intra-species based on the result of single ITS and three-locus analysis. Within H. ovalis and T. hemprichii separately, individuals from Xisha Islands first group together, then grouped with individuals from Nansha Islands and/or Xincun Bay and/or Sanya Bay and/or Daya Bay, which indicated that geographical distribution influenced population evolution. However, intra-species differentiation did not emerge in the tree of matK or rbcL.


Assuntos
Recifes de Corais , Hydrocharitaceae , DNA , Código de Barras de DNA Taxonômico , Ecossistema , Humanos
6.
Microbiologyopen ; 10(1): e1150, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33377630

RESUMO

Marine picocyanobacteria belonging to genera Synechococcus and Prochlorococcus are genetically diverged and distributed into distinct biogeographical patterns, and both are infected by genetically closely related cyanopodoviruses. Previous studies have not fully explored whether the two virus-host systems share similar gene expression patterns during infection. Whole-genome expression dynamics of T7-like cyanopodovirus P-SSP7 and its host Prochlorococcus strain MED4 have already been reported. Here, we conducted genomic and transcriptomic analyses on T7-like cyanopodovirus S-SBP1 during its infection on Synechococcus strain WH7803. S-SBP1 has a latent period of 8 h and phage DNA production of 30 copies per cell. In terms of whole-genome phylogenetic relationships and average nucleotide identity, S-SBP1 was most similar to cyanopodovirus S-RIP2, which also infects Synechococcus WH7803. Three hypervariable genomic islands were identified when comparing the genomes of S-SBP1 and S-RIP2. Single nucleotide variants were also observed in three S-SBP1 genes, which were located within the island regions. Based on RNA-seq analysis, S-SBP1 genes clustered into three temporal expression classes, whose gene content was similar to that of P-SSP7. Thirty-two host genes were upregulated during phage infection, including those involved in carbon metabolism, ribosome components, and stress response. These upregulated genes were similar to those upregulated by Prochlorococcus MED4 in response to infection by P-SSP7. Our study demonstrates a programmed temporal expression pattern of cyanopodoviruses and hosts during infection.


Assuntos
Regulação Bacteriana da Expressão Gênica/genética , Regulação Viral da Expressão Gênica/genética , Myoviridae/genética , Synechococcus/genética , Synechococcus/virologia , Transcriptoma/genética , Expressão Gênica/genética , Perfilação da Expressão Gênica , Genoma Viral/genética , Ilhas Genômicas/genética , Filogenia , Prochlorococcus/genética , Prochlorococcus/virologia , Água do Mar/microbiologia , Synechococcus/classificação
7.
Int J Mol Sci ; 21(5)2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155871

RESUMO

We aimed to study the effects of an ethyl acetate fraction of Physalis alkekengi (PAE) on d-galactose (d-gal)-induced senescence and the underlying mechanism. Firstly, analysis of the phytochemical composition revealed total flavonoids, total phenolics, total saponins, rutin, and luteolin contents of 71.72 ± 2.99 mg rutin equivalents/g, 40.19 ± 0.47 mg gallic acid equivalents/g, 128.13 ± 1.04 mg oleanolic acid equivalents/g, 1.67 ± 0.07 mg/g and 1.61 ± 0.01 mg/g, respectively. The mice were treated with d-gal for six weeks, and from the fifth week, the mice were administered with PAE by gavage once a day for five weeks. We found significant d-gal-induced ageing-related changes, such as learning and memory impairment in novel object recognition and Y-maze, fatigue in weight-loaded forced swimming, reduced thymus coefficient, and histopathological injury of the liver, spleen, and hippocampus. The PAE effectively protected from such changes. Further evaluation showed that PAE decreased the senescence-associated ß-galactosidase of the liver, spleen, and hippocampus, as well as the oxidative stress of the liver, plasma, and brain. The abundance of flavonoids, phenols, and saponins in PAE may have contributed to the above results. Overall, this study showed the potential application of PAE for the prevention or treatment of ageing-associated disorders.


Assuntos
Comportamento Animal/efeitos dos fármacos , Senescência Celular , Galactose/farmacologia , Transtornos da Memória/tratamento farmacológico , Physalis/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Acetatos/química , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Estresse Oxidativo
8.
Appl Environ Microbiol ; 84(16)2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29915108

RESUMO

Picocyanobacteria Prochlorococcus and Synechococcus are abundant in the global oceans and subject to active viral infection. In this study, the genetic diversity of picocyanobacteria and the genetic diversity of cyanopodoviruses were synchronously investigated along water columns in the equatorial Indian Ocean and over a seasonal time course in the coastal Sanya Bay, South China Sea. Using the 16S-23S rRNA internal transcribed spacer (ITS)-based clone library and quantitative PCR (qPCR) analyses, the picocyanobacterial community composition and abundance were determined. Sanya Bay was dominated by clade II Synechococcus during all the seasons, and a typical population shift from high-light-adapted Prochlorococcus to low-light-adapted Prochlorococcus was found along the vertical profiles. Strikingly, the DNA polymerase gene sequences of cyanopodoviruses revealed a much greater genetic diversity than we expected. Nearly one-third of the phylogenetic groups were newly described here. No apparent seasonal pattern was observed for the Sanya Bay picocyanobacterial or cyanopodoviral communities. Different dominant cyanopodovirus lineages were identified for the coastal area, upper euphotic zone, and middle-to-lower euphotic zone of the open ocean. Diversity indices of both picocyanobacteria and cyanopodoviruses were highest in the middle euphotic zone and both were lower in the upper euphotic zone, reflecting a host-virus interaction. Cyanopodoviral communities differed significantly between the upper euphotic zone and the middle-to-lower euphotic zone, showing a vertical pattern similar to that of picocyanobacteria. However, in the surface waters of the open ocean, cyanopodoviruses exhibited no apparent biogeographic pattern, differing from picocyanobacteria. This study demonstrates correlated distribution patterns of picocyanobacteria and cyanopodoviruses, as well as the complex biogeography of cyanopodoviruses.IMPORTANCE Picocyanobacteria are highly diverse and abundant in the ocean and display remarkable global biogeography and a vertical distribution pattern. However, how the diversity and distribution of picocyanobacteria affect those of the viruses that infect them remains largely unknown. Here we synchronously analyzed the community structures of cyanopodoviruses and picocyanobacteria at spatial and temporal scales. Both spatial and temporal variations of cyanopodoviral communities can be linked to those of picocyanobacteria. The coastal area, upper euphotic zone, and middle-to-lower euphotic zone of the open ocean have distinct cyanopodoviral communities, showing horizontal and vertical variation patterns closely related to those of picocyanobacteria. These findings emphasize the driving force of host community in shaping the biogeographic structure of viruses. Our work provides important information for future assessments of the ecological roles of viruses and hosts for each other.


Assuntos
Variação Genética , Consórcios Microbianos , Podoviridae/genética , Prochlorococcus/genética , Synechococcus/genética , China , DNA Espaçador Ribossômico/genética , Interações Microbianas , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 23S/genética , Estações do Ano , Água do Mar/microbiologia , Água do Mar/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...