Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Macro Lett ; 8(5): 553-557, 2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35619374

RESUMO

Diblock, triblock, and pentablock copolypeptides were designed and prepared for formation of polyion complex hydrogels in aqueous media. Increasing the number of block segments was found to allow formation of hydrogels with substantially enhanced stiffness at equivalent concentrations. Use of similar length ionic segments also allowed mixing of different block architectures to fine-tune hydrogel properties. The pentablock hydrogels possess a promising combination of high stiffness, rapid self-healing properties, and cell compatible surface chemistry that makes them promising candidates for applications requiring injectable or printable hydrogel scaffolds.

2.
ACS Macro Lett ; 8(10): 1275-1279, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35651151

RESUMO

Multicomponent interpenetrating network hydrogels possessing enhanced mechanical stiffness compared to their individual components were prepared via physical mixing of diblock copolypeptides that assemble by either hydrophobic association or polyion complexation in aqueous media. Optical microscopy analysis of fluorescent-probe-labeled multicomponent hydrogels revealed that the diblock copolypeptide components rapidly and spontaneously self-sort to form distinct hydrogel networks that interpenetrate at micron length scales. These materials represent a class of microscale compartmentalized hydrogels composed of degradable, cell-compatible components, which possess rapid self-healing properties and independently tunable domains for downstream applications in biology and additive manufacturing.

3.
J Am Chem Soc ; 139(42): 15114-15121, 2017 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-28976744

RESUMO

Synthetic diblock copolypeptides were designed to incorporate oppositely charged ionic segments that form ß-sheet-structured hydrogel assemblies via polyion complexation when mixed in aqueous media. The observed chain conformation directed assembly was found to be required for efficient hydrogel formation and provided distinct and useful properties to these hydrogels, including self-healing after deformation, microporous architecture, and stability against dilution in aqueous media. While many promising self-assembled materials have been prepared using disordered or liquid coacervate polyion complex (PIC) assemblies, the use of ordered chain conformations in PIC assemblies to direct formation of new supramolecular morphologies is unprecedented. The promising attributes and unique features of the ß-sheet-structured PIC hydrogels described here highlight the potential of harnessing conformational order derived from PIC assembly to create new supramolecular materials.


Assuntos
Hidrogéis/química , Hidrogéis/síntese química , Conformação Molecular , Peptídeos/química , Peptídeos/síntese química , Íons/química
4.
Chem Commun (Camb) ; 49(54): 6045-7, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23722503

RESUMO

We developed quantum dot-engineered M13 virus layer-by-layer hybrid composite films with incorporated fluorescence quenchers. TNT is designed to displace the quenchers and turn on the quantum dot fluorescence. TNT was detected at the sub ppb level with a high selectivity.


Assuntos
Bacteriófago M13/química , Técnicas Biossensoriais , Pontos Quânticos , Trinitrotolueno/análise , Semicondutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...