Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Huan Jing Ke Xue ; 45(7): 3828-3838, 2024 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-39022931

RESUMO

Based on a typical ozone (O3) pollution process in Jinan City from June 16 to 26, 2021, the variation characteristics of O3 and its precursor volatile organic compounds (VOCs) during different pollution periods (clean period (CP), pollution rise period (PRP), heavy pollution period (HPP), and pollution decline period (PDP)) in the urban area were analyzed. Both positive matrix factorization (PMF) and an observation-based model (OBM) were used to identify the main sources of VOCs, O3 production mechanisms, and sensitive species. The results showed that the average value of ρ(O3-8h) during the HPP period in the urban area was (246.67±11.24) µg·m-3, and ρ(O3-1h) had a peak value of 300 µg·m-3. The volume fractions of VOCs and NO2 concentration were affected by the decrease in planetary boundary layer and wind speed, which were 76.99%-145.36% and 127.78%-141.18% higher than those in the other three periods, respectively, and were the main reasons for the aggravation of O3 pollution. Alkanes, oxygenated volatile organic compounds (OVOCs), and halogenated hydrocarbons accounted for 43.81%, 20.98%, and 17.43% of VOCs in urban areas, respectively. All of them showed significant growth during the HPP period, with acetone, propane, and ethane being the top three species by volume in each stage and isopentane showing the highest growth during the HPP period. Alkene, alkanes, and aromatic hydrocarbons accounted for 40.19%, 28.06%, and 21.92% of the ozone generation potential (OFP). 1-butene, toluene, isopentane, and isoprene were the species with higher OFP. Isoprene had the highest OFP during the PRP phase, and 1-butene had the highest OFP during the HPP phase. The volume fraction of isopentane significantly increased OFP. The correlation coefficient between VOCs and CO preliminarily indicated that motor vehicle exhaust and oil and gas volatilization were the main sources of VOCs during the HPP period. Further use of PMF revealed that solvent use sources, combustion sources, motor vehicle exhaust+oil and gas volatilization sources, industrial emission sources, and plant sources were important sources of VOCs in urban areas. The contribution of motor vehicle exhaust+oil and gas volatilization sources in the HPP period to VOCs was 3.09-14.72 times higher than that in other periods. The contribution of solvent use sources to VOCs was approximately 2.50 times higher than that in the CP and PRP periods. The main sources of VOCs volume fraction increase were motor vehicle exhaust, oil and gas volatilization sources, and solvent use sources. Potential sources and concentration weight analysis found that VOCs were also affected by the transmission of VOCs to Binzhou and Dongying in the northeast direction. The OBM results indicated that the main pathway of O3 formation in urban areas was the reaction of peroxide hydroxyl radicals (HO2·ï¼‰ and methyl peroxide radicals (CH3O2·ï¼‰ with NO, and the net ozone generation rate during the HPP phase [P(O3)net] was 24×10-9 h-1. Based on the sensitivity experiment results, the alkene components of 1-butene, propylene, cis-2-butene, and ethylene were the dominant species for O3 production.

2.
Zhongguo Zhong Yao Za Zhi ; 49(2): 431-442, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403319

RESUMO

This paper aims to explore the inhibitory effect of Yueju Pills on breast cancer and decipher the underlying mechanism. A total of 92 SPF-grade SD female rats were involved in this study, and 14 of them were randomly selected into control group. The remaining 78 rats were administrated with 7,12-dimethylbenzanthracene(DMBA) by gavage to establish the breast cancer model. The modeled rats were randomized into model, tamoxifen(1.9 mg·kg~(-1)·d~(-1)), and low-and high-dose(17, 34 g·kg~(-1)·d~(-1)) Yueju Pills groups. The mental state, food intake, and activities of the rats were observed daily, and the body weight was measured on alternate days. After 12 weeks of administration, the rats were sacrificed and the tumor weight was measured. The serum estrogen and progeste-rone levels were determined by enzyme-linked immunosorbent assay. The histopathological changes of the breast and tumor were observed by hematoxylin-eosin staining. Western blot was employed to measure the protein levels of glucose transporter 1(GLUT1), lactate dehydrogenase A(LDHA), phosphofructokinase muscle(PFKM), pyruvate kinase isozyme type M2(PKM2), hexokinase 2(HK2), nuclear factor-kappaB(NF-κB), and phosphorylated NF-κB. The intestinal microbiome was examined by 16S rRNA high-throughput sequencing. The results showed that compared with the model group, high and low-dose Yueju Pills showed the tumor inhibition rate of 15.8% and 64.5%, respectively, and the low dose group had stronger inhibitory effect. Compared with the control group, the model group presented elevated the levels of estrogen and progesterone in serum. The administration of Yueju Pills lowered such ele-vation, and the low-dose group showed stronger lowering effect(P<0.05). Compared with the model group, Yueju Pills reduced the glands with increased breast tissue, the degree of breast duct expansion, the number and area of acinar cavity, the secretions, and the layers of mammary epithelial cells. Furthermore, Yueju Pills down-regulated the expression of GLUT1, LDHA, PFKM, PKM2, HK2, and NF-κB(P<0.05) and altered the diversity, composition, structure, and abundance of intestinal flora. The results showed that Yueju Pills could inhibit breast cancer by regulating the secretion of estrogen and progesterone, glycolysis, inflammatory cytokines, and intestinal flora.


Assuntos
9,10-Dimetil-1,2-benzantraceno , Neoplasias , Ratos , Feminino , Animais , 9,10-Dimetil-1,2-benzantraceno/toxicidade , NF-kappa B/genética , Progesterona , Transportador de Glucose Tipo 1 , RNA Ribossômico 16S , Estrogênios
3.
Eur J Med Chem ; 265: 116057, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38142511

RESUMO

Histone deacetylases (HDACs) are a group of enzymes that remove acetyl groups from histones, leading to the silencing of genes. Targeting specific isoforms of HDACs has emerged as a promising approach for cancer therapy, as it can overcome drawbacks associated with pan-HDAC inhibitors. HDAC6 is a unique HDAC isoform that deacetylates non-histone proteins and is primarily located in the cytoplasm. It also has two catalytic domains and a zinc-finger ubiquitin binding domain (Zf-UBD) unlike other HDACs. HDAC6 plays a critical role in various cellular processes, including cell motility, protein degradation, cell proliferation, and transcription. Hence, the deregulation of HDAC6 is associated with various malignancies. In this study, we report the design and synthesis of a series of HDAC6 inhibitors. We evaluated the synthesized compounds by HDAC enzyme assay and identified that compound 8g exhibited an IC50 value of 21 nM and 40-fold selective activity towards HDAC6. We also assessed the effect of compound 8g on various cell lines and determined its ability to increase protein acetylation levels by Western blotting. Furthermore, the increased acetylation of α-tubulin resulted in microtubule polymerization and changes in cell morphology. Our molecular docking study supported these findings by demonstrating that compound 8g binds well to the catalytic pocket via L1 loop of HDAC6 enzyme. Altogether, compound 8g represents a preferential HDAC6 inhibitor that could serve as a lead for the development of more potent and specific inhibitors.


Assuntos
Inibidores de Histona Desacetilases , Histona Desacetilases , Desacetilase 6 de Histona , Simulação de Acoplamento Molecular , Histona Desacetilases/metabolismo , Inibidores de Histona Desacetilases/química , Histonas/metabolismo , Ácidos Hidroxâmicos/química
4.
Mol Ecol ; 32(5): 1098-1116, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36528869

RESUMO

Thermal priming of reef corals can enhance their heat tolerance; however, the legacy effects of heat stress during parental brooding on larval resilience remain understudied. This study investigated whether preconditioning adult coral Pocillopora damicornis to high temperatures (29°C and 32°C) could better prepare their larvae for heat stress. Results showed that heat-acclimated adults brooded larvae with reduced symbiont density and shifted thermal performance curves. Reciprocal transplant experiments demonstrated higher bleaching resistance and better photosynthetic and autotrophic performance in heat-exposed larvae from acclimated adults compared to unacclimated adults. RNA-seq revealed strong cellular stress responses in larvae from heat-acclimated adults that could have been effective in rescuing host cells from stress, as evidenced by the widespread upregulation of genes involved in cell cycle and mitosis. For symbionts, a molecular coordination between light harvesting, photoprotection and carbon fixation was detected in larvae from heat-acclimated adults, which may help optimize photosynthetic activity and yield under high temperature. Furthermore, heat acclimation led to opposing regulations of symbiont catabolic and anabolic pathways and favoured nutrient translocation to the host and thus a functional symbiosis. Notwithstanding, the improved heat tolerance was paralleled by reduced light-enhanced dark respiration, indicating metabolic depression for energy saving. Our findings suggest that adult heat acclimation can rapidly shift thermal tolerance of brooded coral larvae and provide integrated physiological and molecular evidence for this adaptive plasticity, which could increase climate resilience. However, the metabolic depression may be maladaptive for long-term organismal performance, highlighting the importance of curbing carbon emissions to better protect corals.


Assuntos
Antozoários , Termotolerância , Animais , Antozoários/genética , Recifes de Corais , Larva , Termotolerância/genética , Aclimatação , Simbiose
5.
FEBS J ; 290(7): 1840-1854, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36349420

RESUMO

Androgen receptor (AR) signalling is known to be dispensable for the biology of castration-resistant prostate cancer (CRPC), whereas the AR itself and the residual androgens after castration are crucial for the growth and progression of CRPC. Therefore, there is high demand for novel therapeutic candidates targeting AR itself or aberrant AR signalling to suppress the progression to or the growth of CPRC. Here, we report that ginsenoside compound K (GCK), the primary bioactive metabolite biotransformed from protopanaxadiol (PPD) ginsenoside, acts as a novel AR signalling inhibitor by transcriptionally suppressing AR expression and tumour growth in athymic nude mice. GCK inhibited cell growth in LNCaP, PC-3 and 22Rv1 prostate cancer cell lines and suppressed the expression levels of cell cycle regulators. GCK down-regulated epithelial-mesenchymal transition markers such as vimentin and matrix metalloproteinase 9 (MMP9), whereas E-cadherin was significantly increased in GCK-stimulated LNCaP and 22Rv1 cells. Moreover, GCK treatment markedly decreased both AR and AR-V7 protein levels in LNCaP and 22Rv1 cells, possibly by decreasing AR promoter activity. Experiments with AR promoter-deleted constructs revealed that the region between -412 and -227 is critical for GCK regulation. GCK treatment in athymic nude mice implanted with 22Rv1 CRPC cell lines significantly suppressed tumour growth and AR expression levels in tumour tissues. Collectively, our results suggest that GCK, as a novel AR inhibitor, could be a potential therapeutic agent against prostate cancer and an effective chemopreventive agent to delay the progression to CRPC.


Assuntos
Ginsenosídeos , Neoplasias de Próstata Resistentes à Castração , Masculino , Animais , Camundongos , Humanos , Androgênios/farmacologia , Androgênios/metabolismo , Androgênios/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Camundongos Nus , Xenoenxertos , Linhagem Celular Tumoral , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
6.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-967421

RESUMO

Background@#Elderly patients with hip fractures frequently receive perioperative transfusions, which are associated with increased morbidity and mortality. This study aimed to evaluate the impact of a patient blood management (PBM) program on the appropriateness of red blood cell (RBC) transfusion and clinical outcomes in geriatric patients undergoing hip fracture surgery. @*Methods@#In 2018, the revised PBM program was implemented at the Korea University Anam Hospital, Seoul, Republic of Korea. Elderly patients aged ≥ 65 years who underwent hip fracture surgery from 2017 to 2020 were evaluated. Clinical characteristics and outcomes were analyzed according to the timing of PBM implementation (pre-PBM, early-PBM, and late-PBM). Multiveriate regression analysis was used to evaluate the risk factors of the adverse outcomes, such as in-hospital mortality or 30-day readmission. @*Results@#A total of 884 elderly patients were included in this study. The proportion of patients who received perioperative RBC transfusions decreased significantly (43.5%, 40.1%, and 33.2% for pre-PBM, early-PBM, and late-PBM, respectively; P = 0.013). However, the appropriateness of RBC transfusion significantly increased (54.0%, 60.1%, and 94.7%, respectively; P < 0.001). The duration of in-hospital stay and 30-day readmission rates significantly decreased. Multivariable regression analysis revealed that RBC transfusion (odds ratio, 1.815; 95% confidence interval, 1.137–2.899; P = 0.013) was significantly associated with adverse outcomes. @*Conclusion@#Implementing the PBM program increased the appropriateness of RBC transfusion without compromising transfusion quality and clinical outcomes. Therefore, adopting the PBM program may improve the clinical management of elderly patients following hip fracture surgery.

7.
Eur J Med Chem ; 240: 114582, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35834905

RESUMO

HDAC6 and Hsp90, existing as a cytosolic complex play an important role in maintaining the protein homeostasis. The interplay of HDAC6 and Hsp90 has attracted wide attention due to their important role and promise as therapeutic targets in malignant cancers. Therefore, the discovery of dual inhibitors targeting HDAC6 and Hsp90 is of high importance. In the present study, we describe the design, synthesis, and biological evaluation of bifunctional inhibitors against HDAC6 and Hsp90 interplay. In particular, compound 6e shows a significant inhibitory activity against both HDAC6 and Hsp90 with IC50 values of 106 nM and 61 nM, respectively. Compound 6e promotes the acetylation of HDAC6 substrate proteins such as α-tubulin and Hsp90 via HDAC6 inhibition, and also induces the degradation of Hsp90 clients such as Her2, EGFR, Met, Akt, and HDAC6 via Hsp90 inhibition. Compound 6e consequently furnishes potent antiproliferative effect on gefitinib-resistant H1975 non-small cell lung cancer (NSCLC) with a GI50 value of 1.7 µM. In addition, compound 6e successfully achieved significant tumor growth inhibition in H1975 NSCLC xenograft model without noticeable abnormal behavior, body weight changes, and apparent ocular toxicity. We conclude that compound 6e constitutes an excellent tool as well as a valuable lead for assessment of Hsp90 and HDAC6 dual inhibition with a single molecule.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Antineoplásicos/química , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Proteínas de Choque Térmico HSP90 , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases/química , Humanos , Neoplasias Pulmonares/tratamento farmacológico
8.
Sci Total Environ ; 842: 156851, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35750167

RESUMO

The successful dispersal of coral larvae is vital to the population replenishment and reef recovery and resilience. Despite that this critical early stage is susceptible to ocean warming and acidification, little is known about the responses of coral larvae to warming and acidification across different biological scales. This study explored the influences of elevated temperature (29 °C versus 33 °C) and pCO2 (500 µatm versus 1000 µatm) on brooded larvae of Pocillopora damicornis at the organismal, cellular and gene expression levels. Heat stress caused bleaching, depressed light-enhanced dark respiration, photosynthesis and autotrophy, whereas high pCO2 stimulated photosynthesis. Although survival was unaffected, larvae at 33 °C were ten-times more likely to settle than those at 29 °C, suggesting reduced capacity to disperse and differentiate suitable substrate. Remarkably, heat stress induced greater symbiont loss at ambient pCO2 than at high pCO2, while cell-specific pigment concentrations of symbionts at 33 °C increased twofold under ambient pCO2 relative to high pCO2, suggesting pCO2-dependent bleaching patterns. Considerable increases in activities of host antioxidants superoxide dismutase (SOD) and catalase (CAT) at 33 °C indicated oxidative stress, whereas lipid peroxidation and caspase activities were contained, thereby restraining larval mortality at 33 °C. Furthermore, the coral host mounted stronger transcriptional responses than symbionts. High pCO2 stimulated host metabolic pathways, possibly because of the boosted algal productivity. In contrast, host metabolic processes and symbiont photosystem genes were downregulated at 33 °C. Interestingly, the upregulation of extracellular matrix genes and glycosaminoglycan degradation pathway at 33 °C was more evident under ambient pCO2 than high pCO2, suggesting compromised host tissue integrity that could have facilitated symbiont expulsion and bleaching. Our results provide insights into how coral larvae respond to warming and acidification at different levels of biological organization, and demonstrate that ocean acidification can mediate thermal bleaching and gene expression in coral larvae under heat stress.


Assuntos
Antozoários , Animais , Antozoários/fisiologia , Recifes de Corais , Expressão Gênica , Resposta ao Choque Térmico , Concentração de Íons de Hidrogênio , Larva , Oceanos e Mares , Água do Mar
9.
Food Chem ; 394: 133405, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35717920

RESUMO

A rapid and sensitive method was developed based on matrix solid phase dispersion (MSPD) for the determination of hexabromocyclododecane enantiomers (±α, ±ß and ± Î³-HBCD) in animal meat. The instrumental analysis was employed with liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) at trace level (ng g-1). To obtain excellent efficiency, the key parameters, including the type of dispersive adsorbent and elution solvent, were investigated by single-factor experiments. The volume of elution solvent and amount of dispersive adsorbent were optimized by the Box-Behnken design through response surface methodology. Under optimized conditions, the developed method exhibited excellent methodologic characteristics and was applied to the determination of HBCD enantiomers in real chicken and pork meat. Experimental results indicated that the proposed method would be an efficient, rapid and application method for the determination of lipophilic organic pollutants in animal meat.


Assuntos
Carne , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Hidrocarbonetos Bromados , Carne/análise , Extração em Fase Sólida/métodos , Solventes/química , Espectrometria de Massas em Tandem/métodos
10.
J Biol Chem ; 298(6): 102017, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35526564

RESUMO

Jumonji domain-containing 3 (JMJD3/KDM6B) is a histone demethylase that plays an important role in regulating development, differentiation, immunity, and tumorigenesis. However, the mechanisms responsible for the epigenetic regulation of inflammation during mastitis remain incompletely understood. Here, we aimed to investigate the role of JMJD3 in the lipopolysaccharide (LPS)-induced mastitis model. GSK-J1, a small molecule inhibitor of JMJD3, was applied to treat LPS-induced mastitis in mice and in mouse mammary epithelial cells in vivo and in vitro. Breast tissues were then collected for histopathology and protein/gene expression examination, and mouse mammary epithelial cells were used to investigate the mechanism of regulation of the inflammatory response. We found that the JMJD3 gene and protein expression were upregulated in injured mammary glands during mastitis. Unexpectedly, we also found JMJD3 inhibition by GSK-J1 significantly alleviated the severity of inflammation in LPS-induced mastitis. These results are in agreement with the finding that GSK-J1 treatment led to the recruitment of histone 3 lysine 27 trimethylation (H3K27me3), an inhibitory chromatin mark, in vitro. Furthermore, mechanistic investigation suggested that GSK-J1 treatment directly interfered with the transcription of inflammatory-related genes by H3K27me3 modification of their promoters. Meanwhile, we also demonstrated that JMJD3 depletion or inhibition by GSK-J1 decreased the expression of toll-like receptor 4 and negated downstream NF-κB proinflammatory signaling and subsequently reduced LPS-stimulated upregulation of Tnfa, Il1b, and Il6. Together, we propose that targeting JMJD3 has therapeutic potential for the treatment of inflammatory diseases.


Assuntos
Inibidores Enzimáticos , Histona Desmetilases com o Domínio Jumonji , Mastite , Animais , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Epigênese Genética , Células Epiteliais , Feminino , Histonas/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Lipopolissacarídeos , Glândulas Mamárias Animais/citologia , Mastite/induzido quimicamente , Mastite/tratamento farmacológico , Camundongos
11.
Acta Pharmacol Sin ; 43(5): 1274-1284, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34417574

RESUMO

Silicosis caused by inhalation of silica particles leads to more than ten thousand new occupational exposure-related deaths yearly. Exacerbating this issue, there are currently few drugs reported to effectively treat silicosis. Tetrandrine is the only drug approved for silicosis treatment in China, and despite more than decades of use, its efficacy and mechanisms of action remain largely unknown. Here, in this study, we established silicosis mouse models to investigate the effectiveness of tetrandrine of early and late therapeutic administration. To this end, we used multiple cardiopulmonary function test, as well as markers for inflammation and fibrosis. Moreover, using single cell RNA sequencing and transcriptomics of lung tissue and quantitative microarray analysis of serum from silicosis and control mice, our results provide a novel description of the target pathways for tetrandrine. Specifically, we found that tetrandrine attenuated silicosis by inhibiting both the canonical and non-canonical NLRP3 inflammasome pathways in lung macrophages. Taken together, our work showed that tetrandrine yielded promising results against silicosis-associated inflammation and fibrosis and further lied the groundwork for understanding its molecular targets. Our results also facilitated the wider adoption and development of tetrandirne, potentially accelerating a globally accepted therapeutic strategy for silicosis.


Assuntos
Inflamassomos , Silicose , Animais , Benzilisoquinolinas , Fibrose , Inflamassomos/metabolismo , Inflamação/metabolismo , Pulmão/patologia , Macrófagos/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Silicose/tratamento farmacológico , Silicose/metabolismo
12.
Epidemiology and Health ; : e2022029-2022.
Artigo em Coreano | WPRIM (Pacífico Ocidental) | ID: wpr-937558

RESUMO

OBJECTIVES@#Opioids are prescribed to treat moderate to severe pain. We investigated recent trends in opioid (morphine, oxycodone, fentanyl, and hydromorphone) prescriptions using data from the Korean National Health Insurance Service-National Sample Cohort between 2002 and 2015. @*METHODS@#The morphine milligram equivalent (MME) was calculated to standardize the relative potency of opioids. The number (cases) or amount (MME) of annual opioid prescriptions per 10,000 registrants was computed to analyze trends in opioid prescriptions after age standardization. Joinpoint regression analysis was conducted to calculate the annual percentage change and average annual percentage change (AAPC). @*RESULTS@#The number (cases) of prescriptions per 10,000 registrants increased from 0.07 in 2002 to 41.23 in 2015 (AAPC, 76.0%; 95% confidence interval [CI], 61.6 to 91.7). The MME per 10,000 registrants increased from 15.06 in 2002 to 40,727.80 in 2015 (AAPC, 103.0%; 95% CI, 78.2 to 131.3). The highest AAPC of prescriptions and MME per 10,000 registrants were observed in the elderly (60-69 years) and in patients treated at general hospitals. Fentanyl prescriptions increased most rapidly among the 4 opioids. @*CONCLUSIONS@#Consumption of opioids greatly increased in Korea over the 14-year study period.

13.
Artigo em Inglês | MEDLINE | ID: mdl-34721627

RESUMO

PURPOSE: There has been mounting evidence that Dendrobium officinale polysaccharides (DOP), a traditional Chinese medicine, are a potential candidate treatment for N-methyl-N'-nitro-N-nitrosoguanidine- (MNNG-) induced precancerous lesions of gastric cancer (PLGC). However, the underlying mechanisms have not been adequately addressed. METHOD: We utilized RNA-Seq analysis to investigate possible molecular targets and then used Venn software to identify the differentially expressed genes (DEGs). Further, we analyzed these DEGs with core analysis, upstream analysis, and interaction network analysis by IPA software and validated the DEGs by real-time PCR and Western blot. RESULT: 78 DEGs were identified from the normal control group (CON), the PLGC model group (MOD), and the DOP-treated group (DOP) by the Venn software. Further analysis of these DEGs, including core analysis, upstream analysis, and interaction network analysis, was performed by Ingenuity Pathway Analysis (IPA). The main canonical pathways involved were SPINK1 Pancreatic Cancer Pathway (-log (P value) = 4.45, ratio = 0.0667) and Circadian Rhythm Signaling (-log (P value) = 2.33, ratio = 0.0606). Circadian Rhythm Signaling was strongly upregulated in the model group versus the DOP group. CLOCK was predicted to be strongly activated (z-score = 2.236) in upstream analysis and induced the downstream PER3. In addition, the relative mRNA expression levels of seven DEGs (CD2AP, ECM1, AQP4, PER3, CMTM4, ESRRG, and KCNJ15) from RT-PCR agreed with RNA-Seq data from MOD versus CON and MOD versus DOP groups. The gene and protein expression levels of PER3 and AQP4 were significantly downregulated in the PLGC model and significantly increased by DOP treatment (9.6 g/kg). CONCLUSIONS: These findings not only showed DOP inhibits PLGC development by upregulating the PER3 and AQP4 gene and protein expression but also suggested that its mechanism of action involved modulating the Circadian Rhythm Signaling pathway.

14.
Front Oncol ; 11: 651553, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745932

RESUMO

BACKGROUND: Immune checkpoint inhibitors (ICIs) have dramatically altered the treatment landscape for patients with melanoma. However, their use also generates unique immune-related adverse effects (irAEs). We performed a systematic review and network meta-analysis to compare the risk of pneumonitis associated with ICIs for patients with advanced or metastatic melanoma. METHODS: Phase II/III randomized clinical trials (RCTs) with ICIs were identified through comprehensive searches of multiple databases. An NMA was conducted to compare the risk of pneumonitis associated with ICIs and all-grade (grade 1-5) and high-grade (grade 3-5) immune-related pneumonitis (IRP) were estimated by odds ratios (ORs). RESULTS: A total of 10 randomized clinical trials involving 5,335 patients were enrolled in this study. Conventional chemotherapy was associated with a lower risk of grade 1-5 IRP compared with ICIs monotherapy (OR, 0.14, 95% CI, 0.03 to 0.73) and dual ICIs combination (OR, 0.03, 95% CI, 0.00 to 0.19). In addition, dual ICIs combination showed a noticeably higher risk than ICI monotherapy (OR, 4.45, 95% CI, 2.14 to 9.25) of grade 1-5 IRP. No significant difference in grade 1-5 IRP was observed between cytotoxic T lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1) inhibitors. As to grade 3-5 IRP, no statistically significant difference was found among different ICIs-based regimens. CONCLUSION: These findings revealed that ICIs could increase the risk of all-grade pneumonitis for patients with advanced melanoma, compared with conventional chemotherapy. Dual ICIs combination could further increase the risk of all-grade pneumonitis than ICIs monotherapy. There was no significant difference in the risk of pneumonia between CTLA-4 and PD-1 inhibitors.

15.
Artigo em Inglês | MEDLINE | ID: mdl-34398727

RESUMO

A Gram-stain-negative, rod-shaped and facultatively aerobic bacterial strain, designated F7430T, was isolated from coastal sediment collected at Jingzi Wharf in Weihai, PR China. Cells of strain F7430T were 0.3-0.4 µm wide, 2.0-2.6 µm long, non-flagellated, non-motile and formed pale-beige colonies. Growth was observed at 4-40 °C (optimum, 30 °C), pH 6.0-9.0 (optimum, pH 7.5-8.0) and at NaCl concentrations of 1.0-10.0 % (w/v; optimum, 1.0 %). The sole respiratory quinone of strain F7430T was ubiquinone 8 and the predominant cellular fatty acids were summed feature 8 (C18 : 1 ω7c / C18 : 1 ω6c; 60.7 %), summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c; 30.2 %) and C15 : 0 iso (13.9 %). The polar lipids of strain F7430T consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, one unidentified phospholipid and three unidentified lipids. Results of 16S rRNA gene sequences analyses indicated that this strain belonged to the family Halieaceae and had high sequence similarities to Parahaliea aestuarii JCM 51547T (95.3 %) and Halioglobus pacificus DSM 27932T (95.2 %) followed by 92.9-95.0 % sequence similarities to other type species within the aforementioned family. The rpoB gene sequences analyses indicated that the novel strain had the highest sequence similarities to Parahaliea aestuarii JCM 51547T (82.2 %) and Parahaliea mediterranea DSM 21924T (82.2 %) followed by 75.2-80.5 % sequence similarities to other type species within this family. Phylogenetic analyses showed that strain F7430T constituted a monophyletic branch clearly separated from the other genera of family Halieaceae. Whole-genome sequencing of strain F7430T revealed a 3.3 Mbp genome size with a DNA G+C content of 52.6 mol%. The genome encoded diverse metabolic pathways including the Entner-Doudoroff pathway, assimilatory sulphate reduction and biosynthesis of dTDP-l-rhamnose. Based on results from the current polyphasic study, strain F7430T is proposed to represent a novel species of a new genus within the family Halieaceae, for which the name Sediminihaliea albiluteola gen. nov., sp. nov. is proposed. The type strain of the type species is F7430T (=KCTC 72873T=MCCC 1H00420T).


Assuntos
Gammaproteobacteria/classificação , Sedimentos Geológicos/microbiologia , Filogenia , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Gammaproteobacteria/isolamento & purificação , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
16.
ACS Appl Mater Interfaces ; 13(29): 34773-34781, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34279902

RESUMO

Particulate matter of 0.3 µm in diameter (PM0.3) poses a serious threat to the environment and human beings. Ultrathin and -light nanofibrous filters with excellent filtration properties can significantly prevent the detrimental effects of these particles. Here, we develop free-standing polyamide PA-66 ultrafine nanofiber papers for PM0.3 filtration using effective and scalable blow and electro-blow spinning techniques. The smallest average fiber diameter is 61.7 nm, which is 2-3 orders of magnitude smaller than that of conventional textiles. Poly(ethylene terephthalate) nonwovens are selected to fabricate free-standing nanofiber papers of various polymers, including polyamide, poly(methyl methacrylate), poly(vinylpyrrolidone), and poly(ethylene oxide) owing to the smooth surfaces of the nonwovens. This underlying principle can be used to create similar free-standing nanofiber papers from other commodity polymers in the future. Mechanisms of capturing particulate matter with different nanofiber morphologies are discussed. Salt and oil particulates are used to characterize the filtration properties. PA-66 papers are promising reusable filters owing to their mechanical particle-capture mechanism. The blow-spun PA-66 papers show filtration performance of 98.75% efficiency and a pressure drop of 125.44 Pa owing to the "slip" effect caused by the ultrasmall diameter. In the electro-blow spinning process, a supplementary voltage supply is conducive to separating nanofiber bundles into random-oriented nanofibers. Electro-blown spun papers possess an ultrahigh efficiency of 99.99% with a reduced areal density of 0.9 g m-2. These PA-66 papers can be used in a variety of applications, such as reusable personal protective equipment, industrial waste gas treatment, and central ventilation purification systems.

17.
Bioorg Chem ; 115: 105195, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34314918

RESUMO

Heat shock protein 90 (Hsp90) plays an important role in cancer cell proliferation, survival, and migration by regulating the maturation and stabilization of numerous oncoproteins. Despite significant efforts in developing Hsp90 inhibitors, none of these have been approved for clinical use, mostly due to toxicity, such as liver, cardiac, and retinal toxicity. To avoid undesirable toxicity, we herein report a hydrogen peroxide-activated Hsp90 inhibitor, Boro-BZide (3), which is capable of selectively targeting cancer cells over normal cells. Boro-BZide (3) can be activated by high levels of hydrogen peroxide, releasing its parent active Hsp90 inhibitor. The mechanism of action was determined by a series of experiments including fluorescence polarization assay, cell viability assay, western blotting, high-pressure liquid chromatography (HPLC), and fluorescence-activated cell sorting (FACS) analysis. These efforts ultimately led to the identification of a novel hydrogen peroxide-activated Hsp90 prodrug with improved therapeutic index, which was less prone to furnish unwanted adverse effects. This hydrogen peroxide-responsive prodrug strategy will be beneficial for overcoming the toxicity hurdles of Hsp90 inhibitors for clinical application.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Peróxido de Hidrogênio/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Células MCF-7 , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas
18.
Biomol Ther (Seoul) ; 29(6): 667-677, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34099592

RESUMO

The elevated expression of the hyaluronan-mediated motility receptor (HMMR) is known to be highly associated with tumor progression in prostate cancer, but the molecular mechanisms underlying the regulation of HMMR expression remain unclear. Here, we report that mammalian target of rapamycin (mTOR) is a key regulator of HMMR expression, for which its kinase activity is required. Pharmacological inhibitors of mTOR, such as rapamycin and Torin2, markedly suppressed the mRNA level as well as the protein level of HMMR in LNCaP and PC-3 cells. Our data demonstrate that such regulation occurs at the transcription level. HMMR promoter reporter assays revealed that the transcription factor SRF is responsible for the mTOR-mediated transcriptional regulation of HMMR gene. Consistently, the suppression of HMMR expression by Torin2 was noticeably reversed by the overexpression of SRF. Moreover, our findings suggest that the SRF binding sites responsible for the transcriptional regulation of HMMR through the mTOR-SRF axis are located in HMMR promoter sequences carrying the first intron, downstream of the translational start site. Furthermore, the upregulation of HMMR by DHT was abolished by stimulation with rapamycin, prior to DHT treatment, suggesting that mTOR activity is required for the induction of HMMR expression by androgen. Collectively, our study provides new mechanistic insights into the role of mTOR/SRF/AR signaling in HMMR regulation in prostate cancer cells.

19.
Front Robot AI ; 8: 639734, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33954163

RESUMO

Cranes are widely used in the field of construction, logistics, and the manufacturing industry. Cranes that use wire ropes as the main lifting mechanism are deeply troubled by the swaying of heavy objects, which seriously restricts the working efficiency of the crane and even cause accidents. Compared with the single-pendulum crane, the double-pendulum effect crane model has stronger nonlinearity, and its controller design is challenging. In this paper, cranes with a double-pendulum effect are considered, and their nonlinear dynamical models are established. Then, a controller based on the radial basis function (RBF) neural network compensation adaptive method is designed, and a stability analysis is also presented. Finally, the hardware-in-the-loop experimental results show that the neural network compensation control can effectively improve the control performance of the controller in practice.

20.
Artigo em Inglês | MEDLINE | ID: mdl-34003740

RESUMO

A Gram-stain negative, rod-shaped, facultatively aerobic, pale-beige-coloured bacterial strain, designated F7233T, was isolated from coastal sediment sampled at Jingzi Bay, Weihai, PR China. Cells of strain F7233T were 0.3-0.4 µm wide, 1.2-1.4 µm wide long, non-spore-forming and motile with one flagellum. Optimum growth occurred at 30 °C, with 1.0 % (w/v) NaCl and at pH 6.5-7.0. Positive for nitrate reduction, hydrolysis of Tweens and oxidase activity. The sole respiratory quinone of strain F7233T was ubiquinone-10 and the predominant cellular fatty acid was summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c). The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine and one unidentified aminophospholipid. The G+C content of the chromosomal DNA was 63.3 mol%. Phylogenetic analysis of the 16S rRNA gene sequence revealed that the newly isolate belonged to the genus Stappia, with 96.8 % sequence similarity to Stappia indica MCCC 1A01226T, 96.1 % similarity to Stappia stellulata JCM 20692T and 95.5% similarity to Stappia taiwanensis CC-SPIO-10-1T. On the basis of phylogenetic, phenotypic and chemotaxonomic data, it is considered that strain F7233T should represent a novel species within the genus Stappia, for which the name Stappia albiluteola sp. nov. is proposed. The type strain is F7233T (=MCCC 1H00419T=KCTC 72859T).


Assuntos
Sedimentos Geológicos/microbiologia , Filogenia , Rhodobacteraceae/classificação , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Rhodobacteraceae/isolamento & purificação , Análise de Sequência de DNA , Ubiquinona/análogos & derivados , Ubiquinona/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...