Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Technol ; : 1-10, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36441138

RESUMO

Carbamazepine (CBZ) is a common antiepileptic drug. CBZ enters the environment through unreasonable and standardized ways such as human and animal metabolites, discarded drugs, and more than half of its metabolites are released into the environment. Since CBZ is not easy to be degraded, continuous input of CBZ into the water environment will cause long-term impact on the water ecological environment and seriously endanger human health. Aiming at how to degrade wastewater containing carbamazepine, studies were conducted on the degradation of carbamazepine by ultrasound/zero-valent iron/persulfate system (US/Fe0/PS). Firstly, the removal effects of carbamazepine by different systems, such as ultrasound/sodium persulfate (US/PS), zero-valent iron/persulfate system (Fe0/PS) and US/Fe0/PS, were compared; Secondly, the influence of factors, such as ultrasonic power, sodium persulfate dosage, zero-valent iron dosage, reaction temperature, pH, etc., on the reaction was investigated by the control variables method. Results show that ultrasound power, PS concentration, pH and temperature have a great influence on the removal of carbamazepine in US/Fe0/PS reaction system. Besides, the optimum parameters for degradation of carbamazepine with US/Fe0/PS reaction system were determined ([CBZ]0 = 0.025 mM; [PS]0 = 0.4 mM; Fe0 = 4.0 mg/L; ultrasonic power = 40 W; T = 30 ℃; initial pH = 5.0). Finally, the intermediates and degradation pathways of carbamazepine by US/Fe0/PS system were analyzed and speculated. It was inferred that two intermediates were generated during the degradation of carbamazepine, mainly through the ring opening and decyclization of piperazine rings. It was proved that process US/Fe0/PS has a very important application value in the degradation of antibiotic-containing wastewater.

2.
Hum Mov Sci ; 40: 163-75, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25574765

RESUMO

In this study, we investigated children's fine motor development by analyzing drawing trajectories, kinematics and kinetics. Straight lines drawing task and circles drawing task were performed by using a force sensitive tablet. Forty right-handed and Chinese mother-tongue students aged 6-12, attending classes from grade 1 to 5, were engaged in the experiment. Three spatial parameters, namely cumulative trace length, vector length of straight line and vertical diameter of circle were determined. Drawing duration, mean drawing velocity, and number of peaks in stroke velocity profile (NPV) were derived as kinematic parameters. Besides mean normal force, two kinetic indices were proposed: normalized force angle regulation (NFR) and variation of fine motor control (VFC) for circles drawing task. The maturation and automation of fine motor ability were reflected by increased drawing velocity, reduced drawing duration, NPV and NFR, with decreased VFC in circles drawing task. Grade and task main effects as well as significant correlations between age and parameters suggest that factors such as schooling, age and task should be considered in the assessment of fine motor skills. Compared with kinematic parameters, findings of NFR and VFC revealed that kinetics is another important perspective in the analysis of fine motor movement.


Assuntos
Destreza Motora/fisiologia , Movimento/fisiologia , Fatores Etários , Fenômenos Biomecânicos , Criança , China , Análise Discriminante , Mãos/fisiologia , Escrita Manual , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...