Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 62(12): 3149-3159, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37133163

RESUMO

This paper proposes a multifunctional metamaterial device operating in the terahertz (THz) band. The metamaterial device can switch functions by using the phase transition properties of vanadium dioxide (V O 2) and the photoconductive effect of silicon. An intermediate metal layer divides the device into the I side and II side. When V O 2 is in the insulating state, the I side can achieve polarization conversion from linear polarization waves to linear polarization waves at 0.408-0.970 THz. When V O 2 is in the metal-like state, the I side can perform polarization conversion from linear polarization waves to circular polarization waves at 0.469-1.127 THz. When silicon is not excited in the absence of light, the II side can perform polarization conversion from linear polarization waves to linear polarization waves at 0.799-1.336 THz. As the light intensity increases, the II side can realize stable broadband absorption at 0.697-1.483 THz when silicon is in the conductive state. The device can be applied to wireless communications, electromagnetic stealth, THz modulation, THz sensing, and THz imaging. Moreover, it provides a fresh idea for the design of multifunctional metamaterial devices.

2.
Opt Express ; 31(5): 8884-8896, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36859994

RESUMO

Frequency selective surfaces (FSSs), modern artificial materials, show great potential in engineering applications due to their excellent frequency selection capabilities. In this paper, we introduce a flexible strain sensor based on FSS reflection characteristics, which can be well conformally attached to the surface of an object and bear mechanical deformation from a certain load. When the FSS structure changes, the original working frequency will be shifted. By measuring the difference in electromagnetic performance, the strain degree of the object can be monitored in real-time. In this study, we designed an FSS sensor with a working frequency of 31.4 GHz and amplitude that reaches -35 dB that exhibits favorable resonance properties in the Ka-band. The quality factor of FSS is 16.2, which indicates that the sensor has excellent sensing performance. The sensor was applied in the strain detection of a rocket engine case through statics and electromagnetic simulations. The analysis showed that the working frequency of the sensor shifted by approximately 200 MHz for 1.64% radial expansion of the engine case and the frequency shift exhibits an excellent linear relationship with the deformation in diverse loads, so it can be used for accurate strain detection of the case. Based on experiments, we carried out the uniaxial tensile test of the FSS sensor in this study. The sensor's sensitivity was 1.28 GHz/mm when the FSS was stretched by 0-3 mm in the test. Therefore, the FSS sensor has high sensitivity and strong mechanical properties, which verifies the practical value of the FSS structure designed in this paper. It has a broad development space in this field.

3.
Micromachines (Basel) ; 13(7)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35888830

RESUMO

Currently, terahertz metamaterials are studied in many fields, but it is a major challenge for a metamaterial structure to perform multiple functions. This paper proposes and studies a switchable multifunctional multilayer terahertz metamaterial. Using the phase-transition properties of vanadium dioxide (VO2), metamaterials can be controlled to switch transmission and reflection. Transmissive metamaterials can produce an electromagnetically induced transparency-like (EIT-like) effect that can be turned on or off according to different polarization angles. The reflective metamaterial is divided into I-side and II-side by the middle continuous VO2 layer. The I-side metamaterials can realize linear-to-circular polarization conversion from 0.444 to 0.751 THz when the incident angle of the y-polarized wave is less than 30°. The II-side metamaterials can realize linear-to-linear polarization conversion from 0.668 to 0.942 THz when the incident angle of the y-polarized wave is less than 25°. Various functions can be switched freely by changing the conductivity of VO2 and the incident surface. This enables metamaterials to be used as highly sensitive sensors, optical switches, and polarization converters, which provides a new strategy for the design of composite functional metamaterials.

4.
Micromachines (Basel) ; 13(7)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35888853

RESUMO

We propose and design a metamaterial broadband stop-band filter with a steep cut-off in the terahertz region. The filter is based on the flexible structure of metal-dielectric-metal-dielectric-metal (MDMDM). Simulation results show that the filter has a center frequency of 1.08 THz, the square ratio reaches 0.95, and the -20 dB bandwidth reaches 1.07 THz. In addition, it has excellent flat-top characteristics with an average transmission rate in the resistive band of no more than 5%. The relative bandwidth has been up to 99%, and stopband absorption rate has reached more than 98%. The effects of the main structural parameters on the transmission characteristics are discussed. The role of each layer of metal in the filter is explored by studying the effect of the variation of the number of metal layers on the filter. The symmetry of the structure ensures the polarization insensitivity of the filter at normal incidence. The correctness of the simulation results was verified by analyzing the effective permittivity and magnetic permeability. To investigate the transmission characteristics of the metamaterial filter in-depth, we analyzed the electric field strength and surface current distribution at the center frequency of the filter. The designed terahertz filter may have potential applications in terahertz communications, sensors, and emerging terahertz technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...