Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(19): 18932-18941, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37768554

RESUMO

The second near-infrared (NIR-II) window laser-activated agents have attracted broad interest in an orthotopic cancer theranostic. However, developing NIR-II photothermal agents (PTAs) with advanced photothermal conversion efficiency (PTCE) and tumor-specific response elevation remains a crucial challenge. Herein, a hollow gold nanorod (AuHNR) with a strong localized surface plasmon resonance (LSPR) peak in the NIR-II window was coated with MnO2 and chitosan to obtain AuHNR@MnO2@CS (termed AuMC) by a one-step method. Upon exposure to the tumor microenvironment (TME), the overexpressed GSH triggered degradation of the MnO2 layer to release Mn2+ and resulted in the PTCE elevation owing to exposure of the AuHNR. Consequently, photoacoustic and magnetic resonance imaging for accurate diagnosis, Mn2+-mediated chemodynamic therapy, and AuHNR elevating PT therapy for precise treatment could be achieved. Both in vitro and in vivo experiments confirmed the good performance of the AuMC on an orthotopic bladder cancer precise theranostic. This study provided NIR-II activated, TME-response PT conversion efficiency enhanced PTAs and offered a tumor-selective theranostic agent for orthotopic bladder cancer in clinical application.

2.
Nanoscale ; 14(48): 17929-17939, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36325926

RESUMO

Intravesical instillation has been widely utilized for bladder cancer treatment in clinic. However, due to the bladder mucosal barrier, its poor penetration efficiency and drug utilization limit the clinical therapeutic effectiveness and result in a high recurrence rate. Therefore, designing an efficient and controllable drug delivery nanoplatform is of great significance for bladder cancer treatment. Non-invasive therapy based on near-infrared-II (NIR-II) photothermal therapy (PTT) conduces to overcome bladder mucosal barrier and enhance drug delivery. Also, the photothermal nanomaterials, Au Hollow Nanorods (AuHNRs), demonstrate strong photothermal properties and drug loading capacity. Herein, a quaternized chitosan N-(2-hydroxyl)propyl-3-trimethyl ammonium chitosan chloride (HTCC)-modified nanocarrier Dox/NH4HCO3@AuHNRs-HTCC (DNAH) was designed for controlled drug release and enhanced penetration. The drug loading capacity of DNAH reached 117.20%. Also, the thermal decomposition of NH4HCO3 realized NIR-II-triggered gas-driven drug burst release, and the doxorubicin release was 2.79 times higher within 1 h after NIR-II irradiation. Also, the HTCC-modified nanocarriers significantly enhanced the bladder mucosal permeability as well as long-term drug retention, and the penetration efficiency of DNAH increased by 144%. In the orthotopic bladder cancer model, the tumor suppression rate and mouse survival time were significantly improved. DNAH showed potent inhibition of the orthotopic bladder tumor growth owing to the enhanced penetration and drug delivery. This work presents a potential drug delivery nanocarrier, which is promising for optimized bladder mucosal permeability and controlled drug burst release.


Assuntos
Quitosana , Hipertermia Induzida , Nanopartículas , Neoplasias da Bexiga Urinária , Camundongos , Animais , Fototerapia , Terapia Fototérmica , Bexiga Urinária , Camundongos Nus , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos , Sistemas de Liberação de Medicamentos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...