Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(25): 6489-6495, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38869432

RESUMO

Independent electrical control of spin and valley degrees of freedom (DOFs) in 2D materials is difficult due to the coupling of spin and valley DOFs. Here we propose that spin-filter transport and valley polarization can be independently manipulated by an electric field in 2D breathing kagome Ta3I8 due to the possession of both triferroic (ferromagnetism, ferroelectric, and ferrovalley) and bipolar magnetic semiconducting characteristics. The spin-filter transport can be realized by applying a bias voltage without altering the semiconducting characteristic. The flip of valley polarization is fulfilled by switching the ferroelectric polarization with a gate voltage. Our results demonstrate the potential to control different DOFs independently by adjusting the direction of the electric field.

2.
J Phys Chem A ; 128(23): 4593-4594, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38867591
3.
J Phys Chem B ; 128(23): 5543-5544, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38867611
4.
J Colloid Interface Sci ; 670: 687-697, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38788436

RESUMO

Electrocatalytic nitrogen reduction reaction (NRR) is one of the most promising approaches to achieving green and efficient NH3 production. However, the designs of efficient NRR catalysts with high activity and selectivity still are severely hampered by inherent linear scaling relations among the adsorption energies of NRR intermediates. Herein, the properties of ten M3B4 type MBenes have been initially investigated for efficient N2 activation and reduction to NH3via first-principles calculations. We highlight that Cr3B4 MBene possesses remarkable NRR activity with a record-low limiting potential (-0.13 V). Then, this work proposes descriptor-based design principles that can effectively evaluate the catalytic activity of MBenes, which have been further employed to design bimetallic M2M'B4 MBenes. As a result, 5 promising candidates including Ti2YB4, V2YB4, V2MoB4, Nb2YB4, and Nb2CrB4 with excellent NRR performance have been extracted from 20 bimetallic MBenes. Further analysis illuminates that constructing bimetallic MBenes can selectively tune the adsorption strength of NHNH2** and NH2NH2**, and break the linear scaling relations between their adsorption energies, rendering them ideal for NRR. This work not only pioneers the application of MBenes as efficient NRR catalysts but also proposes rational design principles for boosting their catalytic performance.

5.
iScience ; 27(5): 109673, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38646181

RESUMO

Machine learning interatomic potential (MLIP) overcomes the challenges of high computational costs in density-functional theory and the relatively low accuracy in classical large-scale molecular dynamics, facilitating more efficient and precise simulations in materials research and design. In this review, the current state of the four essential stages of MLIP is discussed, including data generation methods, material structure descriptors, six unique machine learning algorithms, and available software. Furthermore, the applications of MLIP in various fields are investigated, notably in phase-change memory materials, structure searching, material properties predicting, and the pre-trained universal models. Eventually, the future perspectives, consisting of standard datasets, transferability, generalization, and trade-off between accuracy and complexity in MLIPs, are reported.

6.
Nanoscale Horiz ; 9(2): 264-277, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38019263

RESUMO

The flourish of two-dimensional (2D) materials provides a versatile platform for building high-performance electronic devices in the atomic thickness regime. However, the presence of the high Schottky barrier at the interface between the metal electrode and the 2D semiconductors, which dominates the injection and transport efficiency of carriers, always limits their practical applications. Herein, we show that the Schottky barrier can be controllably lifted in the heterostructure consisting of Janus MoSSe and 2D vdW metals by different means. Based on density functional theory calculations and machine learning modelings, we studied the electrical contact between semiconducting monolayer MoSSe and various metallic 2D materials, where a crossover from Schottky to Ohmic/quasi-Ohmic contact is realized. We demonstrated that the band alignment at the interface of the investigated metal-semiconductor junctions (MSJs) deviates from the ideal Schottky-Mott limit because of the Fermi-level pinning effects induced by the interface dipoles. Besides, the effect of the thickness and applied biaxial strain of MoSSe on the electronic structure of the junctions are explored and found to be powerful tuning knobs for electrical contact engineering. It is highlighted that using the sure-independence-screening-and-sparsifying-operator machine learning method, a general descriptor WM3/exp(Dint) was developed, which enables the prediction of the Schottky barrier height for different MoSSe-based MSJ. These results provide valuable theoretical guidance for realizing ideal Ohmic contacts in electronic devices based on the Janus MoSSe semiconductors.

7.
J Colloid Interface Sci ; 658: 114-126, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38100968

RESUMO

The development of N2 reduction reaction (NRR) electrocatalysts with excellent activity and selectivity is of great significance, but adsorption-energy linear scaling relations between reaction intermediates severely hamper the realization of this aspiration. Here, we propose an elegant strain engineering strategy to break the linear relations in NRR to promote catalytic activity and selectivity. Our results show that the N-N bond lengths of adsorbed N2 with side-on and end-on configurations exhibit opposite variations under strains, which is illuminated by establishing two different N2 activation mechanisms of "P-P" (Pull-Pull) and "E-E" (Electron-Electron). Then, we highlight that strain engineering can break the linear scaling relations in NRR, selectively optimizing the adsorption of key NH2NH2** and NH2* intermediates to realize a lower limiting potential (UL). Particularly, the catalytic activity-selectivity trade-off of NRR on MXene can be circumvented, resulting in a low UL of -0.25 V and high Faraday efficiency (FE), which is further elucidated to originate from the strain-modulated electronic structures. Last but not least, the catalytic sustainability of MXene under strain has been guaranteed. This work not only provides fundamental insights into the strain effect on catalysis but also pioneers a new avenue toward the rational design of superior NRR catalysts.

8.
Nanoscale ; 16(3): 1331-1344, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38131373

RESUMO

van der Waals (vdW) multiferroic tunnel junctions (MFTJs) based on two-dimensional materials have gained significant interest due to their potential applications in next-generation data storage and in-memory computing devices. In this study, we construct vdW MFTJs by employing monolayer Mn2Se3 as the spin-filter tunnel barrier, TiTe2 as the electrodes and In2S3 as the tunnel barrier to investigate the spin transport properties based on first-principles quantum transport calculations. It is highlighted that apparent tunneling magnetoresistance (TMR) and tunneling electroresistance (TER) effects with a maximum TMR ratio of 6237% and TER ratio of 1771% can be realized by using bilayer In2S3 as the tunnel barrier under finite bias. Furthermore, the physical origin of the distinguished TMR and TER effects is unraveled from the k||-resolved transmission spectra and spin-dependent projected local density of states analysis. Interestingly, four distinguishable conductance states reveal the implementation of four-state nonvolatile data storage using one MFTJ unit. More importantly, in-memory logic computing and multilevel data storage can be achieved at the same time by magnetic switching and electrical control, respectively. These results shed light on vdW MFTJs in the applications of in-memory computing as well as multilevel data storage devices.

9.
EClinicalMedicine ; 66: 102337, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38089859

RESUMO

Background: Ustekinumab and vedolizumab are both effective for treating Crohn's disease (CD). However, no head-to-head trials have been conducted thus far. We aimed to compare the effectiveness of ustekinumab and vedolizumab in CD patients either naïve or exposed to tumor necrosis factor-alpha inhibitors (TNFi). Methods: Patients treated with vedolizumab or ustekinumab for luminal CD were included from six centers in China from May 2020 to July 2023. Steroid-free remission, clinical remission, objective response, and remission at Weeks 26 and 52 were evaluated in a retrospective multicenter propensity score-weighted cohort. Findings: A total of 536 patients were included (386 ustekinumab, and 150 vedolizumab). After adjustment, ustekinumab showed higher rates of clinical remission (56.4% vs. 47.8%, P = 0.005), steroid-free remission (55.4% vs. 46.1%, P = 0.003), and objective response (67.8% vs. 42.7%, P < 0.001) than vedolizumab at Week 26. At Week 52, ustekinumab exhibited significantly higher rates of clinical remission (65.8% vs. 37.5%, P < 0.001), steroid-free remission (65.8% vs. 37.5%, P < 0.001), objective response (66.7% vs. 23.8%, P < 0.001), and objective remission (31.4% vs. 12.7%, P < 0.001). Subgroup analyses revealed that ustekinumab had higher rates of clinical remission, steroid-free remission, and objective response at Weeks 26 and 52, and objective remission at Week 52 in TNFi-exposed patients, while ustekinumab showed higher rates of objective response at Weeks 26 and 52 and clinical remission, steroid-free remission and objective remission at Week 52 in TNFi-naïve patients. Adverse event rates were similar between the groups (4.9% ustekinumab vs. 6.7% vedolizumab, P = 0.423). Interpretation: Ustekinumab showed superior clinical and objective outcomes compared to vedolizumab, with comparable safety outcomes. The therapeutic superiority was observed in both short-term and long-term phases in TNFi-exposed patients, and the long-term phase in TNFi-naïve patients. Funding: National Natural Science Foundation of China, Guangdong Basic and Applied Basic Research Foundation, Key Research Projects of the Sixth Affiliated Hospital, Sun Yat-sen University, the program of Guangdong Provincial Clinical Research Center for Digestive Diseases, and National Key Clinical Discipline.

10.
J Phys Chem Lett ; 14(46): 10489-10498, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37967465

RESUMO

Two-dimensional materials are considered to be promising for next-generation electronic and energy devices. However, the limited availability of 2D materials hinders their applications. Herein, we employed high-throughput computation to discover new 2D materials by cleaving the bulk and to investigate their electronic, thermoelectric, and optoelectronic properties. Using our database containing 810 structures of chalcogenides ABX3 (A or B = Al, Ga, In, Si, Ge, Sn, P, As, Sb, and Bi; X = S, Se, and Te), we identified 204 new 2D compounds promising for experimental preparation according to the exfoliation energy. Notably, 96 of them are more easily exfoliated than graphene, 52 compounds show higher Seebeck coefficients than Bi2Te3 at 300 K, and 20 compounds have power factors beyond 2 × 10-3 Wm-1 K-2 at 900 K. Also, 6 new compounds exhibit high theoretical photovoltaic efficiency exceeding 30%. Our findings expand the 2D materials family and provide new 2D compounds for sustainable thermoelectric and optoelectronic energy applications.

12.
Ying Yong Sheng Tai Xue Bao ; 34(9): 2391-2397, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37899104

RESUMO

Urease inhibitors and nitrification inhibitors can enhance nitrogen (N) fertilizer utilization efficiency and reducing N losses through regulating urea-N transformation. Common urease or nitrification inhibitors, however, are predominantly chemically synthesized and high-cost. Furthermore, their inhibitory effects are mediated by soil pro-perties, climatic conditions, and crop systems. In this study, we conducted a field experiment using natural synergists humic acid/zeolite, along with chemical nitrification inhibitor dicyandiamide (DCD) and their combination to elucidate the impacts of natural synergists combined with chemical inhibitors on annual yield, nitrogen utilization efficiency, soil nitrate-N accumulation, and nitrogen balance within the wheat/maize rotation system. The treatments included no nitrogen fertilizer application (CK), single application of urea (N), urea +DCD (ND), urea + humic acid (NH), urea + zeolite (NP), urea + urease inhibitor N-butylthiophosphoric triamide + DCD (NUD), urea + humic acid + DCD (NHD), and urea + zeolite + DCD (NPD). The results showed that, compared to the treatments NH and NP, the integration of humic acid or zeolite with DCD (NHD and NPD) significantly increased maize yield (11268 and 11397 kg·hm-2) and total annual yield (20494 and 20582 kg·hm-2), which were comparable to those of combined chemical urease and nitrification inhibitors (NUD). The NHD and NPD treatments had higher nitrogen utilization efficiency and lower soil nitrate-N accumulation in 80-100 cm soil layer across all seasons relative to the N treatment, which had no significant difference compared to the NUD treatment. Furthermore, a decline in soil nitrogen surplus by 10.7% and 13.9% was observed when comparing the NHD and NPD treatments with the NH and NP treatments, respectively. These findings suggested that combined humic acid or zeolite and chemical nitrification inhibitors could effectively enhance crop yield and N utilization efficiency and meet the requirements of the green and environmental preservation of modern agriculture.


Assuntos
Zea mays , Zeolitas , Triticum , Substâncias Húmicas , Fertilizantes/análise , Nitratos/farmacologia , Urease , Solo , Agricultura/métodos , Ureia/farmacologia , Nitrogênio/análise , Nitrificação
13.
J Colloid Interface Sci ; 652(Pt B): 1954-1964, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37690303

RESUMO

Exploring multifunctional electrocatalysts to realize efficient hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR) is urgently desired for developing novel renewable energy storage and conversion technologies. However, integrating these three merits in one single catalyst remains a big challenge due to the difficulty in balancing the adsorption strengths of multiple reaction intermediates. Herein, through first-principles calculations, we systematically investigated the electrocatalytic activity of M2B2, M3B4, and M4B6 type MBenes (M = Cr, Mn, Fe, Co, and Ni) for multifunctional HER, OER, and ORR. The results indicate that most of the investigated MBenes show outstanding catalytic activity for HER with hydrogen adsorption Gibbs free energy close to the optimal value (0 eV). Thereinto, Ni2B2 and Co3B4 MBenes can be promising multifunctional HER/OER/ORR electrocatalysts, and Fe3B4 MBene is expected to be a promising bifunctional electrocatalyst for HER/ORR. Especially, Ni2B2 MBene is even better than the benchmark RuO2 catalyst with ultralow low overpotentials of 0.26 and 0.30 V for OER and ORR, respectively. Then, we proposed that the overpotentials of OER/ORR can be well described by the varied ΔGOH* on MBene, which has been further illuminated through the d-band center and charge transfer analysis. Importantly, new scaling relations between the adsorption energies of OOH* and O* on MBenes have been established, where ΔGOOH* and ΔGO* possess different slopes versus ΔGOH*, allowing the significantly lower overpotentials of OER and ORR to be achieved. This work provides not only promising multifunctional HER/OER/ORR electrocatalysts but also new scaling relations to achieve the rational design of MBene-based electrocatalysts.

14.
Chemosphere ; 341: 140053, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37690558

RESUMO

The catalytic efficiency of photocatalysts highly depends on electron transport and mass transfer. Herein, we designed and prepared an effective H2WO4/Ti3C2/g-C3N4 (HTC) Z-scheme heterojunction through interfacial engineering strategy. The results manifested that 97.4% of Cr(VI) (80 µM, 50 mL) could be removed by HTC heterojunction within 10 min under visible light irradiation. The reduction rate constant of Cr(VI) for H2WO4/g-C3N4 (HC) heterojunction increased by a factor of 21 after introducing the conductive Ti3C2. Moreover, 96% of tetracycline (TC, 10 mg L-1, 50 mL) could be degraded by HTC heterojunction within 30 min. The electronic conductivity and ionic diffusion coefficient of HC heterojunction increased by a factor of 64 and 1064 after adding Ti3C2, respectively. This result indicated that the introduction of highly conductive Ti3C2 significantly improved the electron and mass transfer of the heterojunction. Meanwhile, the HCT heterojunction displayed favorable photocurrent, and keep excellent photostability during the long-term test. Moreover, density functional theory (DFT) calculations demonstrated that the internal electric field (IEF) from g-C3N4 to H2WO4 in HCT heterojunction promotes the combination of the photoinduced electrons in the H2WO4 conduction band (CB) with photoinduced holes in the g-C3N4 valence band (VB), thus accelerating the charge transfer in the HCT Z-scheme heterojunction. The antibacterial efficiency of HTC heterojunction against E. coli and S. aureus could reach up to 98.4% and 99.7%, respectively. The degradation intermediates and the potential degradation mechanism of TC were analyzed and proposed based on the results of HPLC-MS analysis. Moreover, the toxicity of TC and degradation intermediates were estimated by Toxicity Estimation Software (T.E.S.T.) based on quantitative structure-activity relationship (QSAR). This work provided a valuable guideline for designing the effective MXene-based Z-scheme heterojunction for environmental remediation.


Assuntos
Elétrons , Recuperação e Remediação Ambiental , Escherichia coli , Staphylococcus aureus , Titânio , Antibacterianos
15.
ACS Appl Mater Interfaces ; 15(24): 29278-29286, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37282501

RESUMO

Accurate and efficient prediction of the stability and structure-stability relationship is important to discover materials; however, it requires tremendous efforts via traditional trial-and-error schemes. Here, we presented a small-data set machine learning (ML) method to accelerate the discovery of promising ternary transition metal boride (MAB) candidates. Based on data sets obtained by ab initio calculations, we developed three robust neural networks to predict the decomposition energy (ΔHd) and assess the thermodynamic stability of 212-typed MABs (M2AB2). The quantitative relation between ΔHd and stability was unraveled by several composition-and-structure descriptors. Three hexagonal M2AB2, i.e., Nb2PB2, Nb2AsB2, and Zr2SB2, were discovered to be stable with negative ΔHd, and 75 metastable MABs were identified with ΔHd less than 70 meV/atom. Finally, the dynamical stability and mechanical properties of MABs were investigated by ab initio calculations, whose results further verified the reliability of our ML models. This work provided a ML approach on small data sets to accelerate the discovery of compounds and expanded the MAB phase family to VA and VIA groups.

16.
Nat Commun ; 14(1): 2483, 2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37120587

RESUMO

Despite recent advances in exfoliated vdW ferromagnets, the widespread application of 2D magnetism requires a Curie temperature (Tc) above room temperature as well as a stable and controllable magnetic anisotropy. Here we demonstrate a large-scale iron-based vdW material Fe4GeTe2 with the Tc reaching ~530 K. We confirmed the high-temperature ferromagnetism by multiple characterizations. Theoretical calculations suggested that the interface-induced right shift of the localized states for unpaired Fe d electrons is the reason for the enhanced Tc, which was confirmed by ultraviolet photoelectron spectroscopy. Moreover, by precisely tailoring Fe concentration we achieved arbitrary control of magnetic anisotropy between out-of-plane and in-plane without inducing any phase disorders. Our finding sheds light on the high potential of Fe4GeTe2 in spintronics, which may open opportunities for room-temperature application of all-vdW spintronic devices.

17.
Materials (Basel) ; 16(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36837088

RESUMO

MXene-supported single-atom catalysts (SACs) for water splitting has attracted extensive attention. However, the easy aggregation of individual metal atoms used as catalytic active centers usually leads to the relatively low loading of synthetic SACs, which limits the development and application of SACs. Herein, by performing first-principles calculations for Pt and 3d transition metal single atoms immobilized on a two-dimensional (2D) Mo2TiC2O2 MXene surface, we systematically studied the performance of heterogeneous dual-atom catalysts (h-DACs) in hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Significantly, h-DACs exhibit higher metal atom loading and more flexible active sites compared to SACs. Benefiting from these features, we found that Pt/Cu@Mo2TiC2O2 heterogeneous DACs exhibits excellent HER activity with ultra-low overpotential |ΔGH∗| (0.04 eV), lower than the corresponding Pt@Mo2TiC2O2 (0.14 eV) and Cu@Mo2TiC2O2 (0.33 eV) SACs, and even lower than that of Pt (0.09 eV). Meanwhile, Pt/Ni@Mo2TiC2O2 exhibits superior OER activity with ultra-low overpotential ηOER (0.38 V), lower than that of Pt@Mo2TiC2O2 (1.11 V) and Ni@Mo2TiC2O2 (0.57 V) SACs, and even lower than that of RuO2 (0.42 V) and IrO2 (0.56 V). Our finding paves the way for the rational design of h-DACs for HER and OER with excellent activity, which provides guidance for other catalytic reactions.

18.
Nanoscale ; 15(2): 483-489, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36519284

RESUMO

The search for materials with high intrinsic carbon monoxide oxidation reaction (COOR) catalytic activity is critical for enhancing the efficiency of reducing CO contamination. COOR catalysts, however, have long relied heavily on noble metals and CeO2. Herein, in order to search for non-noble COOR catalysts that are more active than CeO2, 18 oxygen-functionalized MBenes with orthorhombic and hexagonal crystal structures, denoted as orth-M2B2O2 and hex-M2B2O2 (M = Ti, V, Cr, Zr, Nb, Mo, Hf, Ta and W), were investigated in terms of their COOR catalytic activity by high-throughput first-principles calculations. Hex-Mo2B2O2, orth-Mo2B2O2, hex-V2B2O2 and hex-Cr2B2O2 were found to be more active than CeO2 and possess structural stability below 1000 K, showing the potential to replace CeO2 as the substrates of COOR catalysts. Moreover, orth-Mo2B2O2, hex-V2B2O2 and hex-Cr2B2O2 exhibit even higher COOR catalytic activity than Pt-CeO2 and Au-CeO2, and are expected to be applied as COOR catalysts directly. Further investigations showed that the formation energy of oxygen vacancies could be used as the descriptor of COOR catalytic activity, which would help to reduce the amount of calculations significantly during the catalyst screening process. This work not only reports a series of 2D materials with high COOR catalytic activity and opens up a new application area for MBenes, but also provides a reliable strategy for highly efficient screening for COOR catalysts.

19.
Materials (Basel) ; 17(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38203926

RESUMO

MXene is a promising candidate for the next generation of lightweight electromagnetic interference (EMI) materials owing to its low density, excellent conductivity, hydrophilic properties, and adjustable component structure. However, MXene lacks interlayer support and tends to agglomerate, leading to a shorter service life and limiting its development in thin-layer electromagnetic shielding material. In this study, we designed self-assembled TiO2-Ti3C2Tx materials with a ball-plate structure to mitigate agglomeration and obtain a thin-layer and multiple absorption porous materials for high-efficiency EMI shielding. The TiO2-Ti3C2Tx composite with a thickness of 50 µm achieved a shielding efficiency of 72 dB. It was demonstrated that the ball-plate structure generates additional interlayer cavities and internal interface, increasing the propagation path for an electromagnetic wave, which, in turn, raises the capacity of materials to absorb and dissipate the wave. These effects improve the overall EMI shielding performance of MXene and pave the way for the development of the next-generation EMI shielding system.

20.
Nanoscale Adv ; 4(23): 5144-5153, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36504742

RESUMO

Two-dimensional (2D) transition metal carbides (MXenes) with intrinsic magnetism and half-metallic features show great promising applications for spintronic and magnetic devices, for instance, achieving perfect spin-filtering in van der Waals (vdW) magnetic tunnel junctions (MTJs). Herein, combining density functional theory calculations and nonequilibrium Green's function simulations, we systematically investigated the spin-dependent transport properties of 2D double transition metal MXene ScCr2C2F2-based vdW MTJs, where ScCr2C2F2 acts as the spin-filter tunnel barriers, 1T-MoS2 acts as the electrode and 2H-MoS2 as the tunnel barrier. We found that the spin-up electrons in the parallel configuration state play a decisive role in the transmission behavior. We found that all the constructed MTJs could hold large tunnel magnetoresistance (TMR) ratios over 9 × 105%. Especially, the maximum giant TMR ratio of 6.95 × 106% can be found in the vdW MTJ with trilayer 2H-MoS2 as the tunnel barrier. These results indicate the potential for spintronic applications of vdW MTJs based on 2D double transition metal MXene ScCr2C2F2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...