Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Extremophiles ; 28(2): 24, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598094

RESUMO

Alginate is an important polysaccharide that is abundant in the marine environments, including the Polar Regions, and bacterial alginate lyases play key roles in its degradation. Many reported alginate lyases show characteristics of cold-adapted enzymes, including relatively low temperature optimum of activities (Topt) and low thermal stabilities. However, the cold-adaption mechanisms of alginate lyases remain unclear. Here, we studied the cold-adaptation mechanisms of alginate lyases by comparing four members of the PL7 family from different environments: AlyC3 from the Arctic ocean (Psychromonas sp. C-3), AlyA1 from the temperate ocean (Zobellia galactanivorans), PA1167 from the human pathogen (Pseudomonas aeruginosa PAO1), and AlyQ from the tropic ocean (Persicobacter sp. CCB-QB2). Sequence comparison and comparative molecular dynamics (MD) simulations revealed two main strategies of cold adaptation. First, the Arctic AlyC3 and temperate AlyA1 increased the flexibility of the loops close to the catalytic center by introducing insertions at these loops. Second, the Arctic AlyC3 increased the electrostatic attractions with the negatively charged substrate by introducing a high portion of positively charged lysine at three of the insertions mentioned above. Furthermore, our study also revealed that the root mean square fluctuation (RMSF) increased greatly when the temperature was increased to Topt or higher, suggesting the RMSF increase temperature as a potential indicator of the cold adaptation level of the PL7 family. This study provided new insights into the cold-adaptation mechanisms of bacterial alginate lyases and the marine carbon cycling at low temperatures.


Assuntos
Alginatos , Simulação de Dinâmica Molecular , Humanos , Bacteroidetes , Carbono , Catálise
2.
Mol Cell Proteomics ; 23(5): 100763, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608842

RESUMO

The human gut microbiome is closely associated with human health and diseases. Metaproteomics has emerged as a valuable tool for studying the functionality of the gut microbiome by analyzing the entire proteins present in microbial communities. Recent advancements in liquid chromatography and tandem mass spectrometry (LC-MS/MS) techniques have expanded the detection range of metaproteomics. However, the overall coverage of the proteome in metaproteomics is still limited. While metagenomics studies have revealed substantial microbial diversity and functional potential of the human gut microbiome, few studies have summarized and studied the human gut microbiome landscape revealed with metaproteomics. In this article, we present the current landscape of human gut metaproteomics studies by re-analyzing the identification results from 15 published studies. We quantified the limited proteome coverage in metaproteomics and revealed a high proportion of annotation coverage of metaproteomics-identified proteins. We conducted a preliminary comparison between the metaproteomics view and the metagenomics view of the human gut microbiome, identifying key areas of consistency and divergence. Based on the current landscape of human gut metaproteomics, we discuss the feasibility of using metaproteomics to study functionally unknown proteins and propose a whole workflow peptide-centric analysis. Additionally, we suggest enhancing metaproteomics analysis by refining taxonomic classification and calculating confidence scores, as well as developing tools for analyzing the interaction between taxonomy and function.


Assuntos
Microbioma Gastrointestinal , Metagenômica , Proteômica , Humanos , Proteômica/métodos , Metagenômica/métodos , Proteoma/metabolismo , Espectrometria de Massas em Tandem , Cromatografia Líquida
3.
Appl Environ Microbiol ; 90(1): e0170423, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38169280

RESUMO

Catabolism of algal polysaccharides by marine bacteria is a significant process of marine carbon cycling. ß1,3/1,4-Mixed-linkage xylan (MLX) is a class of xylan in the ocean, widely present in the cell walls of red algae. However, the catabolic mechanism of MLX by marine bacteria remains elusive. Recently, we found that a marine Bacteroidetes strain, Polaribacter sp. Q13, is a specialist in degrading MLX, which secretes a novel MLX-specific xylanase. Here, the catabolic specialization of strain Q13 to MLX was studied by multiomics and biochemical analyses. Strain Q13 catabolizes MLX with a canonical starch utilization system (Sus), which is encoded by a single xylan utilization locus, XUL-Q13. In this system, the cell surface glycan-binding protein SGBP-B captures MLX specifically, contributing to the catabolic specificity. The xylanolytic enzyme system of strain Q13 is unique, and the enzymatic cascade dedicates the stepwise hydrolysis of the ß1,3- and ß1,4-linkages in MLX in the extracellular, periplasmic, and cytoplasmic spaces. Bioinformatics analysis and growth observation suggest that other marine Bacteroidetes strains harboring homologous MLX utilization loci also preferentially utilize MLX. These results reveal the catabolic specialization of MLX degradation by marine Bacteroidetes, leading to a better understanding of the degradation and recycling of MLX driven by marine bacteria.IMPORTANCERed algae contribute substantially to the primary production in marine ecosystems. The catabolism of red algal polysaccharides by marine bacteria is important for marine carbon cycling. Mixed-linkage ß1,3/1,4-xylan (MLX, distinct from hetero-ß1,4-xylans from terrestrial plants) is an abundant red algal polysaccharide, whose mechanism of catabolism by marine bacteria, however, remains largely unknown. This study reveals the catabolism of MLX by marine Bacteroidetes, promoting our understanding of the degradation and utilization of algal polysaccharides by marine bacteria. This study also sets a foundation for the biomass conversion of MLX.


Assuntos
Flavobacteriaceae , Rodófitas , Xilanos/metabolismo , Ecossistema , Flavobacteriaceae/metabolismo , Polissacarídeos/metabolismo , Bacteroidetes/metabolismo , Plantas/metabolismo , Rodófitas/metabolismo , Carbono/metabolismo
4.
Comput Struct Biotechnol J ; 21: 4228-4237, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692080

RESUMO

Metaproteomics has increasingly been applied to study functional changes in the human gut microbiome. Peptide identification is an important step in metaproteomics research, with sequence database search (SDS) and spectral library search (SLS) as the two main methods to identify peptides. However, the large search space in metaproteomics studies causes significant challenges for both identification methods. Moreover, with the development of mass spectrometry, it is now feasible to perform metaproteomic projects involving 100-1000 individual microbiomes. These large-scale projects create a conundrum for searching large databases. In this study, we constructed MetaPep, a core peptide database (including both collections of peptide sequences and tandem MS spectra) greatly accelerating the peptide identifications. Raw files from fifteen metaproteomics projects were re-analyzed and the identified peptide-spectrum matches (PSMs) were used to construct the MetaPep database. The constructed MetaPep database achieved rapid and accurate identification of peptides for human gut metaproteomics. MetaPep has a large collection of peptides and spectra that have been identified in published human gut metaproteomics datasets. MetaPep database can be used as an important resource in the current stage of human gut metaproteomics research. This study showed the possibility of applying a core peptide database as a generic metaproteomics workflow. MetaPep could also be an important resource for future human gut metaproteomics research, such as DIA (data-independent acquisition) analysis.

5.
Anal Chem ; 94(45): 15648-15654, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36327159

RESUMO

The human gut microbiome is a complex system composed of hundreds of species, and metaproteomics can be used to explore their expressed functions. However, many lower abundance species are not detected by current metaproteomic techniques and represent the dark field of metaproteomics. We do not know the minimal abundance of a bacterium in a microbiome(depth) that can be detected by shotgun metaproteomics. In this study, we spiked 15N-labeled E. coli peptides at different percentages into peptides mixture derived from the human gut microbiome to evaluate the depth that can be achieved by shotgun metaproteomics. We observed that the number of identified peptides and peptide intensity from 15N-labeled E. coli were linearly correlated with the spike-in levels even when 15N-labeled E. coli was down to 0.5% of the biomass. Below that level, it was not detected. Interestingly, the match-between-run strategy significantly increased the number of quantified peptides even when 15N-labeled E. coli peptides were at low abundance. This is indicative that in metaproteomics of complex gut microbiomes many peptides from low abundant species are likely observable in MS1 but are not selected for MS2 by standard shotgun strategies.


Assuntos
Microbioma Gastrointestinal , Proteômica , Humanos , Proteômica/métodos , Escherichia coli , Bactérias , Peptídeos
6.
Nat Commun ; 13(1): 5899, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202810

RESUMO

Oxidative degradation of chitin, initiated by lytic polysaccharide monooxygenases (LPMOs), contributes to microbial bioconversion of crystalline chitin, the second most abundant biopolymer in nature. However, our knowledge of oxidative chitin utilization pathways, beyond LPMOs, is very limited. Here, we describe a complete pathway for oxidative chitin degradation and its regulation in a marine bacterium, Pseudoalteromonas prydzensis. The pathway starts with LPMO-mediated extracellular breakdown of chitin into C1-oxidized chitooligosaccharides, which carry a terminal 2-(acetylamino)-2-deoxy-D-gluconic acid (GlcNAc1A). Transmembrane transport of oxidized chitooligosaccharides is followed by their hydrolysis in the periplasm, releasing GlcNAc1A, which is catabolized in the cytoplasm. This pathway differs from the known hydrolytic chitin utilization pathway in enzymes, transporters and regulators. In particular, GlcNAc1A is converted to 2-keto-3-deoxygluconate 6-phosphate, acetate and NH3 via a series of reactions resembling the degradation of D-amino acids rather than other monosaccharides. Furthermore, genomic and metagenomic analyses suggest that the chitin oxidative utilization pathway may be prevalent in marine Gammaproteobacteria.


Assuntos
Quitina , Oxigenases de Função Mista , Aminoácidos , Bactérias/metabolismo , Quitina/metabolismo , Oxigenases de Função Mista/metabolismo , Monossacarídeos , Fosfatos , Polissacarídeos/metabolismo
7.
Microbiol Spectr ; 10(4): e0041222, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35695565

RESUMO

The composition and function of the human gut microbiome are often associated with health and disease status. Sugar substitute sweeteners are widely used food additives, although many studies using animal models have linked sweetener consumption to gut microbial changes and health issues. Whether sugar substitute sweeteners directly change the human gut microbiome functionality remains largely unknown. In this study, we systematically investigated the responses of five human gut microbiomes to 21 common sugar substitute sweeteners, using an approach combining high-throughput in vitro microbiome culturing and metaproteomic analyses to quantify functional changes in different taxa. Hierarchical clustering based on metaproteomic responses of individual microbiomes resulted in two clusters. The noncaloric artificial sweetener (NAS) cluster was composed of NASs and two sugar alcohols with shorter carbon backbones (4 or 5 carbon atoms), and the carbohydrate (CHO) cluster was composed of the remaining sugar alcohols. The metaproteomic functional responses of the CHO cluster were clustered with those of the prebiotics fructooligosaccharides and kestose. The sugar substitute sweeteners in the CHO cluster showed the ability to modulate the metabolism of Clostridia. This study provides a comprehensive evaluation of the direct effects of commonly used sugar substitute sweeteners on the functions of the human gut microbiome using a functional metaproteomic approach, improving our understanding of the roles of sugar substitute sweeteners on microbiome-associated human health and disease issues. IMPORTANCE The human gut microbiome is closely related to human health. Sugar substitute sweeteners as commonly used food additives are increasingly consumed and have potential impacts on microbiome functionality. Although many studies have evaluated the effects of a few sweeteners on gut microbiomes using animal models, the direct effect of sugar substitute sweeteners on the human gut microbiome remains largely unknown. Our results revealed that the sweetener-induced metaproteomic responses of individual microbiomes had two major patterns, which were associated with the chemical properties of the sweeteners. This study provided a comprehensive evaluation of the effects of commonly used sugar substitute sweeteners on the human gut microbiome.


Assuntos
Microbioma Gastrointestinal , Animais , Carbono , Aditivos Alimentares/farmacologia , Humanos , Álcoois Açúcares/farmacologia , Edulcorantes/farmacologia
8.
Front Microbiol ; 12: 683814, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194415

RESUMO

While the genus Streptomyces (family Streptomycetaceae) has been studied as a model for bacterial secondary metabolism and genetics, its close relatives have been less studied. The genus Kitasatospora is the second largest genus in the family Streptomycetaceae. However, its taxonomic position within the family remains under debate and the secondary metabolic potential remains largely unclear. Here, we performed systematic comparative genomic and phylogenomic analyses of Kitasatospora. Firstly, the three genera within the family Streptomycetaceae (Kitasatospora, Streptomyces, and Streptacidiphilus) showed common genomic features, including high G + C contents, high secondary metabolic potentials, and high recombination frequencies. Secondly, phylogenomic and comparative genomic analyses revealed phylogenetic distinctions and genome content differences among these three genera, supporting Kitasatospora as a separate genus within the family. Lastly, the pan-genome analysis revealed extensive genetic diversity within the genus Kitasatospora, while functional annotation and genome content comparison suggested genomic differentiation among lineages. This study provided new insights into genomic characteristics of the genus Kitasatospora, and also uncovered its previously underestimated and complex secondary metabolism.

9.
Front Microbiol ; 12: 658620, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815349

RESUMO

Deconstruction is an essential step of conversion of polysaccharides, and polysaccharide-degrading enzymes play a key role in this process. Although there is recent progress in the identification of these enzymes, the diversity and phylogenetic distribution of these enzymes in marine microorganisms remain largely unknown, hindering our understanding of the ecological roles of marine microorganisms in the ocean carbon cycle. Here, we studied the phylogenetic distribution of nine types of polysaccharide-degrading enzymes in marine bacterial genomes. First, we manually compiled a reference sequence database containing 961 experimentally verified enzymes. With this reference database, we annotated 9,335 enzyme sequences from 2,182 high-quality marine bacterial genomes, revealing extended distribution for six enzymes at the phylum level and for all nine enzymes at lower taxonomic levels. Next, phylogenetic analyses revealed intra-clade diversity in the encoding potentials and phylogenetic conservation of a few enzymes at the genus level. Lastly, our analyses revealed correlations between enzymes, with alginate lyases demonstrating the most extensive correlations with others. Intriguingly, chitinases showed negative correlations with cellulases, alginate lyases, and agarases in a few genera. This result suggested that intra-genus lifestyle differentiation occurred many times in marine bacteria and that the utilization of polysaccharides may act as an important driver in the recent ecological differentiation of a few lineages. This study expanded our knowledge of the phylogenetic distribution of polysaccharide enzymes and provided insights into the ecological differentiation of marine bacteria.

10.
Front Microbiol ; 12: 621161, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33786038

RESUMO

Collagens from marine animals are an important component of marine organic nitrogen. Collagenase-producing bacteria and their collagenases play important roles in collagen degradation and organic nitrogen recycling in the ocean. However, only a few collagenase-producing marine bacteria have been so far discovered. Here, we reported the isolation and characterization of a collagenase-secreting bacterium, designated strain SM1988T, isolated from a green alga Codium fragile sample. Strain SM1988T is a Gram-negative, aerobic, oxidase-, and catalase-positive, unipolar flagellated, and rod-shaped bacterium capable of hydrolyzing casein, gelatin and collagens. Phylogenetic analysis revealed that strain SM1988T formed a distinct phylogenetic lineage along with known genera within the family Pseudoalteromonadaceae, with 16S rRNA gene sequence similarity being less than 93.3% to all known species in the family. Based on the phylogenetic, genomic, chemotaxonomic and phenotypic data, strain SM1988T was considered to represent a novel species in a novel genus in the family Pseudoalteromonadaceae, for which the name Flocculibacter collagenilyticus gen. nov., sp. nov. is proposed, with the type strain being SM1988T (= MCCC 1K04279T = KCTC 72761T). Strain SM1988T showed a high production of extracellular collagenases, which had high activity against both bovine collagen and codfish collagen. Biochemical tests combined with genome and secretome analyses indicated that the collagenases secreted by strain SM1988T are serine proteases from the MEROPS S8 family. These data suggest that strain SM1988T acts as an important player in marine collagen degradation and recycling and may have a promising potential in collagen resource utilization.

11.
BMC Genomics ; 22(1): 124, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33602135

RESUMO

BACKGROUND: Micrococcus luteus is a group of actinobacteria that is widely used in biotechnology and is being thought as an emerging nosocomial pathogen. With one of the smallest genomes of free-living actinobacteria, it is found in a wide range of environments, but intraspecies genetic diversity and adaptation strategies to various environments remain unclear. Here, comparative genomics, phylogenomics, and genome-wide association studies were used to investigate the genomic diversity, evolutionary history, and the potential ecological differentiation of the species. RESULTS: High-quality genomes of 66 M. luteus strains were downloaded from the NCBI GenBank database and core and pan-genome analysis revealed a considerable intraspecies heterogeneity. Phylogenomic analysis, gene content comparison, and average nucleotide identity calculation consistently indicated that the species has diverged into three well-differentiated clades. Population structure analysis further suggested the existence of an unknown ancestor or the fourth, yet unsampled, clade. Reconstruction of gene gain/loss events along the evolutionary history revealed both early events that contributed to the inter-clade divergence and recent events leading to the intra-clade diversity. We also found convincing evidence that recombination has played a key role in the evolutionary process of the species, with upto two-thirds of the core genes having been affected by recombination. Furthermore, distribution of mammal-associated strains (including pathogens) on the phylogenetic tree suggested that the last common ancestor had a free-living lifestyle, and a few recently diverged lineages have developed a mammal-associated lifestyle separately. Consistently, genome-wide association analysis revealed that mammal-associated strains from different lineages shared genes functionally relevant to the host-associated lifestyle, indicating a recent ecological adaption to the new host-associated habitats. CONCLUSIONS: These results revealed high intraspecies genomic diversity of M. luteus and highlighted that gene gain/loss events and extensive recombination events played key roles in the genome evolution. Our study also indicated that, as a free-living species, some lineages have recently developed or are developing a mammal-associated lifestyle. This study provides insights into the mechanisms that drive the genome evolution and adaption to various environments of a bacterial species.


Assuntos
Genoma Bacteriano , Micrococcus luteus , Animais , Evolução Molecular , Variação Genética , Estudo de Associação Genômica Ampla , Genômica , Micrococcus luteus/genética , Filogenia , Recombinação Genética
12.
Mar Genomics ; 55: 100791, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33517978

RESUMO

Pyruvate is a well-known scavenger of reactive oxygen species (ROS) like hydrogen peroxide and could prevent cells from oxidative damage. A pyruvate-requiring marine bacterium, Pyruvatibacter mobilis CGMCC 1.15125T (=KCTC 42509T), was isolated from the culture broth of a photosynthetic marine microalga. Here we report the complete genome sequence of Pyruvatibacter mobilis, which contained a circular chromosome of 3,333,914 bp with a mean G + C content of 63.9%. Through genomic analysis, we revealed that strain CGMCC 1.15125T encodes genes for some antioxidants like superoxide dismutase, glutathione, rubrerythrin and globin to relieve cellular oxidative stress, while pyruvate added to the medium may reduce extracellular ROS. The genome features of P. mobilis provide further insights into the antioxidant activities of bacteria surviving in oxygen-enriched habitats.


Assuntos
Alphaproteobacteria/genética , Antioxidantes/metabolismo , Genoma Bacteriano , Microalgas/microbiologia , Piruvatos/metabolismo , Alphaproteobacteria/metabolismo , Organismos Aquáticos/genética , Organismos Aquáticos/metabolismo , Sequenciamento Completo do Genoma
13.
Front Microbiol ; 11: 9, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32038595

RESUMO

Monoacylglycerol lipases (MGLs) are present in all domains of life. However, reports on bacterial MGLs are still limited. Until now, reported bacterial MGLs are all thermophilic/mesophilic enzymes from warm terrestrial environments or deep-sea hydrothermal vent, and none of them originates from marine environments vastly subject to low temperature, high salts, and oligotrophy. Here, we characterized a novel MGL, GnMgl, from the marine cold-adapted and halophilic bacterium Glaciecola nitratireducens FR1064T. GnMgl shares quite low sequence similarities with characterized MGLs (lower than 31%). GnMgl and most of its bacterial homologs harbor a catalytic Ser residue located in the conserved C(A/S)HSMG motif rather than in the typical GxSxG motif reported on other MGLs, suggesting that GnMgl-like enzymes might be different from reported MGLs in catalysis. Phylogenetic analysis suggested that GnMgl and its bacterial homologs are clustered as a separate group in the monoglyceridelipase_lysophospholipase family of the Hydrolase_4 superfamily. Recombinant GnMgl has no lysophospholipase activity but could hydrolyze saturated (C12:0-C16:0) and unsaturated (C18:1 and C18:2) MGs and short-chain triacylglycerols, displaying distinct substrate selectivity from those of reported bacterial MGLs. The substrate preference of GnMgl, predicted to be a membrane protein, correlates to the most abundant fatty acids within the strain FR1064T, suggesting the role of GnMgl in the lipid catabolism in this marine bacterium. In addition, different from known bacterial MGLs that are all thermostable enzymes, GnMgl is a cold-adapted enzyme, with the maximum activity at 30°C and retaining 30% activity at 0°C. GnMgl is also a halotolerant enzyme with full activity in 3.5M NaCl. The cold-adapted and salt-tolerant characteristics of GnMgl may help its source strain FR1064T adapt to the cold and saline marine environment. Moreover, homologs to GnMgl are found to be abundant in various marine bacteria, implying their important physiological role in these marine bacteria. Our results on GnMgl shed light on marine MGLs.

14.
J Exp Zool A Ecol Genet Physiol ; 323(7): 430-44, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26036840

RESUMO

The membrane progestin receptor α (mPRα) plays an important role in the regulation of oocyte meiotic maturation in fish. However, the endocrine regulation of multiple spawning in fish with asynchronous ovarian development remains to be determined. We identified four genes (FSHß, LHß, CGα and mPRα) that are widely expressed in both the reproductive and non-reproductive tissues of rock bream Oplegnathus fasciatus and examined their expression during ovarian maturation. The level of FSHß transcripts in the pituitary remained high during vitellogenic stages, when the plasma levels of estradiol-17ß reached maximum levels and oocyte development was stimulated. LHß expression in the pituitary and ovary reached maximum levels during oocyte maturation when the plasma levels of testosterone also reached a maximum. A significant correlation between mPRα transcript levels and the gonadosomatic index was observed during vitellogenesis and final maturation. Brain gonadotropin (FSHß and LHß) and mPRα were continuously expressed at different stages of ovarian development. The dynamic and diverse nature of gonadotropins and mPRα gene expression patterns suggests that these genes might jointly regulate ovarian development and maturation through the brain-pituitary-ovary axis in the rock bream endocrine system.


Assuntos
Subunidade beta do Hormônio Folículoestimulante/genética , Hormônio Luteinizante Subunidade beta/genética , Ovário/crescimento & desenvolvimento , Perciformes/fisiologia , Receptores de Progesterona/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Encéfalo/metabolismo , Estradiol/sangue , Feminino , Expressão Gênica , Regulação da Expressão Gênica , Dados de Sequência Molecular , Oogênese/fisiologia , Perciformes/genética , Hipófise/metabolismo , Vitelogênese/fisiologia
15.
Gene ; 511(2): 341-52, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23026213

RESUMO

Growth hormone receptor (Ghr) is a single-transmembrane pass protein which is important in initiating the ability of growth hormone (Gh) to regulate development and somatic growth in vertebrates. In this study, molecular cloning, expression analysis of two different ghr genes (ghr1 and ghr2) in the tongue sole (Cynoglossus semilaevis) was conducted. As a result, the ghr1 and ghr2 cDNA sequences are 2364 bp and 3125 bp, each of which encodes a transmembrane protein of 633 and 561 amino acids (aa), respectively. Besides, the ghr1 gene includes nine exons and eight introns. The sex-specific tissue expression was analyzed by using 14 tissues from females, normal males and extra-large male adults. Both the ghr1 and ghr2 were predominantly expressed in the liver, and the ghr1 expression level in normal males was 1.6 and 1.4 times as much as those in females and extra-large males, while the ghr2 mRNA expression level in normal males was 1.1 and 1.2 times as much as those in females and extra-large males, respectively. Ontogenetic expression analysis at early life stages indicated that the ghr1 and ghr2 mRNAs were detected at all of the 35 sampling points (from oosphere to 410days-old). Furthermore, the sex differences in ghr mRNA expressions were also examined by using a full-sib family of C. semilaevis. Significantly higher levels of ghr1 mRNA were observed in males than in females at most stages of the sampling period (P<0.01). The ghr2 mRNA expression at most stages exhibited a significant sexual difference at each sampling point (P<0.01) without any variation trend related with the sexes during the whole sampling period.


Assuntos
Peixes/genética , Perfilação da Expressão Gênica , Receptores da Somatotropina/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Primers do DNA , DNA Complementar , Feminino , Masculino , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Receptores da Somatotropina/química , Fatores Sexuais
16.
Gene ; 493(1): 92-104, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22120536

RESUMO

Growth hormone (GH) is a polypeptide which is an important regulator of development and somatic growth in teleosts, and may be associated with the mechanisms which drive sexual growth dimorphism in the Half-smooth tongue sole (Cynoglossus semilaevis). In this study, the full length gh cDNA was cloned from C. semilaevis by homology cloning and the rapid amplification of cDNA ends polymerase chain reaction (RACE-PCR). The full-length gh cDNA is 826 bp and contains an open reading frame (ORF) of 603 bp encoding a protein of 200 amino acids (AA). The precursor of gh consists of a 17 amino-acid signal peptide followed by a 183 amino-acid mature polypeptide. GH gene sequences obtained from female and male adults consist of 3428 bp and 3371 bp, respectively, each of which includes six exons and five introns, and the difference in the GH gene size was mainly caused by the microsatellites. When 14 tissues from females, normal males and extra-large male adults were analyzed for sex-specific tissue expression, the gh mRNA was found to be predominantly expressed in the pituitary, and the expression levels in females were 3.6 times as much as those in normal males, while the mRNA expression in extra-large males was 1.7 times as much as those in normal males. Sex differences in gh mRNA expression during development were also examined by using a full-sib family of C. semilaevis, and the gh mRNA was detected at all of the 12 time points sampled from 10 to 380 days-old. A significant increase in gh mRNA was detected starting in 80 day old fish and was then followed by a drop to very low levels starting at 230 day old fish. Differential expression indicated that the gh expression level in females was significantly higher than males (P<0.01) at all of the stages except for 10 days-old. Two microsatellite loci were identified in the second intron of the GH gene. Using these two polymorphic markers to genotype 224 individuals, there was no significant difference between the females and males in the Bohai Sea, the Yellow Sea and the hatchery samples.


Assuntos
Linguados/genética , Hormônio do Crescimento/genética , Polimorfismo Genético , Caracteres Sexuais , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Feminino , Linguados/crescimento & desenvolvimento , Masculino , Repetições de Microssatélites , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência
17.
Comp Biochem Physiol B Biochem Mol Biol ; 160(4): 208-14, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21893211

RESUMO

Insulin-like growth factor I (IGF-I) is a polypeptide hormone that regulates growth during all stages of development in vertebrates. To examine the mechanisms of the sexual growth dimorphism in the Tongue sole (Cynoglossus semilaevis), molecular cloning, expression analysis of IGF-I gene and IGF-I serum concentration analysis were performed. As a result, the IGF-I cDNA sequence is 911 bp, which contains an open reading frame (ORF) of 564 bp encoding a protein of 187 amino acids. The sex-specific tissue expression was analyzed by using 14 tissues from females, normal males and extra-large male adults. The IGF-I mRNA was predominantly expressed in liver, and the IGF-I expression levels in females and extra-large males were 1.9 and 10.2 times as much as those in normal males, respectively. Sex differences in IGF-I mRNA expressions at early life stages were also examined by using a full-sib family of C. semilaevis, and the IGF-I mRNA was detected at all of the 27 sampling points from 10 to 410 days old. An increase in IGF-I mRNA was detected after 190 day old fish. The significantly higher levels of IGF-I mRNA in females were observed after 190 days old in comparison with males (P<0.01). The IGF-I concentrations in serum of mature individuals were detected by ELISA. The IGF-I level in the serum of females was approximately two times as much as that of males. Consequently, IGF-I may play an important role in the endocrine regulation of the sexually dimorphic growth of C. semilaevis.


Assuntos
Linguados/sangue , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , RNA Mensageiro/metabolismo , Caracteres Sexuais , Fatores Etários , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Feminino , Linguados/genética , Expressão Gênica , Masculino , Dados de Sequência Molecular , RNA Mensageiro/genética , Distribuição Tecidual
18.
Fish Shellfish Immunol ; 30(1): 255-62, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21035551

RESUMO

Signal transducer and activator of transcription 3 (STAT3) acts as an important mediator in multiple biological processes induced by different cytokines. So far, little information is available in fish STAT3. In this study, turbot (Scophthalmus maximus) STAT3 gene was cloned and characterized for the first time. The turbot STAT3 full-length cDNA consists of 2355 nucleotides encoding a polypeptide of 784 amino acids with four conserved domains including STAT_int, STAT_alpha, STAT_bind and SH2 domain. The phylogenetic tree showed that turbot STAT3 shared the closest relationship with mandarin fish (Siniperca chuatsi) STAT3. The autoactivation experiment in yeast proved that turbot STAT3 was a strong transcription factor. The quantitative RT-PCR experiment indicated that Stat3 mRNA was expressed in widespread tissues with the highest expression levels in the liver. And the further expression patterns analysis revealed that turbot Stat3 expression levels were increased in liver, spleen, kidney of fish infected with Vibrio anguillarum and liver of fish infected with LCDV. Meantime, hepcidin, one of STAT3 target gene, was also up-regulated in liver of fish infected with two pathogens. These results suggested that turbot Stat3 may involved in the immune defense process as a transcription factor.


Assuntos
Linguados/metabolismo , Regulação da Expressão Gênica/fisiologia , Fator de Transcrição STAT3/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Infecções por Vírus de DNA/metabolismo , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/virologia , DNA Complementar/genética , DNA Complementar/metabolismo , Doenças dos Peixes/imunologia , Doenças dos Peixes/metabolismo , Regulação da Expressão Gênica/imunologia , Iridoviridae , Dados de Sequência Molecular , Filogenia , Fator de Transcrição STAT3/química , Fator de Transcrição STAT3/genética , Vibrioses/imunologia , Vibrioses/metabolismo , Vibrioses/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...