Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 16(8): e2004344, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30067764

RESUMO

The cerebellum allows us to rapidly adjust motor behavior to the needs of the situation. It is commonly assumed that cerebellum-based motor learning is guided by the difference between the desired and the actual behavior, i.e., by error information. Not only immediate but also future behavior will benefit from an error because it induces lasting changes of parallel fiber synapses on Purkinje cells (PCs), whose output mediates the behavioral adjustments. Olivary climbing fibers, likewise connecting with PCs, are thought to transport information on instant errors needed for the synaptic modification yet not to contribute to error memory. Here, we report work on monkeys tested in a saccadic learning paradigm that challenges this concept. We demonstrate not only a clear complex spikes (CS) signature of the error at the time of its occurrence but also a reverberation of this signature much later, before a new manifestation of the behavior, suitable to improve it.


Assuntos
Potenciais de Ação/fisiologia , Cerebelo/fisiologia , Aprendizagem/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Células de Purkinje/fisiologia , Movimentos Sacádicos/fisiologia , Animais , Axônios/fisiologia , Cerebelo/anatomia & histologia , Cerebelo/citologia , Eletrodos Implantados , Macaca mulatta , Masculino , Modelos Neurológicos , Desempenho Psicomotor/fisiologia , Células de Purkinje/citologia , Técnicas Estereotáxicas , Sinapses/fisiologia
2.
Brain Struct Funct ; 220(2): 813-25, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24337340

RESUMO

Similar to memory formation, memory extinction is also a new learning process that requires synaptic plasticity. Actin rearrangement is fundamental for synaptic plasticity, however, whether actin rearrangement in the infralimbic cortex (IL) plays a role in memory extinction, as well as the mechanisms underlying it, remains unclear. Here, using a conditioned taste aversion (CTA) paradigm, we demonstrated increased synaptic density and actin rearrangement in the IL during the extinction of CTA. Targeted infusion of an actin rearrangement inhibitor, cytochalasin D, into the IL impaired memory extinction and de novo synapse formation. Notably, we also found increased myosin II phosphorylation in the IL during the extinction of CTA. Microinfusion of a specific inhibitor of the myosin II ATPase, blebbistatin (Blebb), into the IL impaired memory extinction as well as the related actin rearrangement and changes in synaptic density. Moreover, the extinction deficit and the reduction of synaptic density induced by Blebb could be rescued by the actin polymerization stabilizer jasplakinolide (Jasp), suggesting that myosin II acts via actin filament polymerization to stabilize synaptic plasticity during the extinction of CTA. Taken together, we conclude that myosin II may regulate the plasticity of actin-related synaptic structure during memory extinction. Our studies provide a molecular mechanism for understanding the plasticity of actin rearrangement-associated synaptic structure during memory extinction.


Assuntos
Actinas/metabolismo , Aprendizagem da Esquiva/fisiologia , Extinção Psicológica/fisiologia , Miosina Tipo II/metabolismo , Plasticidade Neuronal , Córtex Pré-Frontal/fisiologia , Animais , Condicionamento Clássico/fisiologia , Masculino , Fosforilação , Córtex Pré-Frontal/ultraestrutura , Ratos Wistar , Sinapses/metabolismo , Sinapses/ultraestrutura , Paladar
3.
J Neurochem ; 117(1): 121-32, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21235575

RESUMO

Cerebral dopamine neurotrophic factor (CDNF) is a novel evolutionary conserved protein which can protect and restore the function of dopaminergic neurons in the rat model of Parkinson's disease, suggesting that CDNF might be beneficial for the treatment of Parkinson's disease. CDNF is widely expressed in neurons in several brain regions including cerebral cortex, hippocampus, substantia nigra, striatum and cerebellum. Human CDNF is glycosylated and secreted from transiently transfected cells; however, the mechanism underlying CDNF secretion is currently unclear. In this study, we found that CDNF could be secreted primarily via the regulated secretion pathway in PC12 cells. The glycosylation of CDNF is not required for its secretion. Moreover, we identified two key subdomains in CDNF which are important for its intracellular localization and secretion. Disrupting helix-1 of CDNF significantly reduces its constitutive and regulated secretion and the helix-1 mutant is retained in the endoplasmic reticulum. Although helix-7 mutation only decreases CDNF regulated secretion and has no effect on its constitutive secretion, which is further supported by the reduction in co-localization of helix-7 mutant with secretory granules. In all, these findings will advance our understanding of the molecular mechanism of CDNF trafficking and secretion.


Assuntos
Líquido Intracelular/metabolismo , Fatores de Crescimento Neural/metabolismo , Neurossecreção/fisiologia , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Retículo Endoplasmático/metabolismo , Feminino , Células HEK293 , Humanos , Células PC12 , Gravidez , Transporte Proteico/fisiologia , Ratos , Ratos Sprague-Dawley
4.
J Neurochem ; 114(1): 110-21, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20403074

RESUMO

Tropomyosin-related kinase (Trk) B is a receptor tyrosine kinase for brain-derived neurotrophic factor (BDNF) which plays a critical role in neuronal survival, differentiation and morphogenesis. Ran-binding protein in the microtubule-organizing center (RanBPM) is a cytosolic scaffold protein that has been shown to interact with protein-tyrosine kinase receptor MET, Axl/Sky, and TrkA in addition to the pan-neurotrophin receptor pan-neurotrophin receptor 75 kDa. In this study, we report RanBPM is a novel TrkB-interacting protein that contributes to BDNF-induced MAPK and Akt activation together with neuronal morphogenesis and survival. Over-expression of RanBPM in PC1210 cells (PC12 cells stably over-expressing TrkB) can significantly enhance BDNF-induced MAPK and Akt activation. Moreover, RanBPM can promote BDNF-induced hippocampal neuronal morphogenesis and enhance BDNF-mediated trophic effects after serum deprivation, while siRNA knock down of RanBPM in cells has the opposite effects. Together, these results suggest that RanBPM may modulate TrkB-mediated downstream signaling and biological functions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Proteínas do Citoesqueleto/fisiologia , Neurônios/fisiologia , Proteínas Nucleares/fisiologia , Receptor trkB/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas , Proteínas do Citoesqueleto/genética , Dendritos/fisiologia , Ativação Enzimática , Hipocampo/citologia , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Nucleares/genética , Fosfatidilinositol 3-Quinases/fisiologia , Mapeamento de Interação de Proteínas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Transdução de Sinais
5.
J Biol Chem ; 284(22): 15126-36, 2009 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-19351881

RESUMO

Brain-derived neurotrophic factor (BDNF) signaling through its receptor, TrkB, modulates survival, differentiation, and synaptic activity of neurons. Both full-length TrkB (TrkB-FL) and its isoform T1 (TrkB.T1) receptors are expressed in neurons; however, whether they follow the same endocytic pathway after BDNF treatment is not known. In this study we report that TrkB-FL and TrkB.T1 receptors traverse divergent endocytic pathways after binding to BDNF. We provide evidence that in neurons TrkB.T1 receptors predominantly recycle back to the cell surface by a "default" mechanism. However, endocytosed TrkB-FL receptors recycle to a lesser extent in a hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs)-dependent manner which relies on its tyrosine kinase activity. The distinct role of Hrs in promoting recycling of internalized TrkB-FL receptors is independent of its ubiquitin-interacting motif. Moreover, Hrs-sensitive TrkB-FL recycling plays a role in BDNF-induced prolonged mitogen-activated protein kinase (MAPK) activation. These observations provide evidence for differential postendocytic sorting of TrkB-FL and TrkB.T1 receptors to alternate intracellular pathways.


Assuntos
Endocitose , Fosfoproteínas/metabolismo , Receptor trkB/metabolismo , Motivos de Aminoácidos , Animais , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Linhagem Celular , Endocitose/efeitos dos fármacos , Complexos Endossomais de Distribuição Requeridos para Transporte , Ativação Enzimática/efeitos dos fármacos , Humanos , Isoenzimas/metabolismo , Cinética , Ligantes , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Fosfoproteínas/química , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Estrutura Terciária de Proteína , Transporte Proteico/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptor trkB/química , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...