Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 237(Pt 2): 117005, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37669733

RESUMO

Water pollution is the major problem seen in today's scenario and even pollutants at low concentration harms our environment. In industrial sector usage of phenol is seen even at low concentrations. The interaction of phenol in the environment provides adverse effects to living beings. This review focuses on the toxicity of phenol and its impact towards environment and human health. The treatment techniques such as distillation, extraction, wet air oxidation, membrane process, electrochemical oxidation, biological treatment and finally adsorption techniques were discussed. Among many treatment techniques so far utilized in the treatment of phenol, adsorption was considered as one of the best technique due to its advantages such as reusability, ease in operation, large availability etc., This review also highlights the adsorption technique for the cleaner removal of phenol from aqueous solution with novel as well as low-cost adsorbents in the removal of phenolic compounds. This review also discusses about the drawbacks and issues related with adsorption of phenolic compounds.

2.
Bioresour Technol ; 283: 36-44, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30901586

RESUMO

In this study Scenedesmus abundans was used as a biosorbent material for removing hydrocarbons from simulated petroleum wastewater. Batch experiments resulted in the removal of 92.16% of hydrocarbons from simulated wastewater within 60 min. The spent biosorbent was converted to bio-oil through hydrothermal liquefaction process (HTL) at temperature range from 220 to 320 °C with 1 h holding time. Liquid hydrocarbons (bio-oil) yield was 43.4 wt% at 300 °C with 15 g of spent sorbent loading and possessed HHV of 39.10 MJ/Kg. Additionally the HTL wastewater (aqueous phase) was recycled as reaction medium and studied for its effects on bio-oil yield which increased till second cycle (47.91 wt%). HTL bio-char was employed as adsorbent to remove heavy metals from wastewater. It showed greater removal efficiency of 86.5% to Ni(II) ions. From the results it was concluded that the petroleum residues can be effectively recycled back into liquid hydrocarbons with simple waste management pathway.


Assuntos
Biomassa , Petróleo/metabolismo , Scenedesmus/metabolismo , Águas Residuárias/química , Óleos de Plantas/metabolismo , Polifenóis/metabolismo , Reciclagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...