Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Materials (Basel) ; 14(14)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34300722

RESUMO

Furan sand is one of the most commonly used chemically bonded molding materials in foundries across the world. It consists of a furfuryl alcohol-based resin and an acid-based liquid catalyst. When the molding material comes in contact with the molten metal, it undergoes a thermal shock accompanied by a certain release of volatile gases. In order to evacuate these gases, molds and cores should have optimal gas permeability values and proper venting by design. If the volatile compounds are not appropriately evacuated, they are prone to enter the melt before the first layer of solidified metal is formed which can lead to the formation of gas-related casting defects. Standard gas permeability measurements are commercially available tools used in the industry to compare and to quality control different sands, however, they only provide reference numbers without actual units. Permeability in a standard unit, m2, provides uniformity and helps the comparison of results from difference sources. In this paper, a new method using Darcy's law (prevalent in earth sciences), was adapted to measure the gas-permeability of furan samples made of silica sand with various grain size distributions. The effect of grain size distribution on the gas-permeability of furan sand samples was studied. Gas-permeability values in m2 were then correlated with mercury-porosity measurement results to bring new light on the relation between pore size, pore volume and the permeability of molding materials.

2.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-820349

RESUMO

OBJECTIVE@#To obtain luteolin and apigenin rich fraction from the ethanolic extract of Cynodon dactylon (L.) (C. dactylon) Pers and evaluate the fraction's cytotoxicity and anti-Chikungunya potential using Vero cells.@*METHODS@#The ethanolic extract of C. dactylon was subjected to silica gel column chromatography to obtain anti-chikungunya virus (CHIKV) fraction. Reverse phase-HPLC and GC-MS studies were carried out to identify the major phytochemicals in the fraction using phytochemical standards. Cytotoxicity and the potential of the fraction against CHIKV were evaluated in vitro using Vero cells. Reduction in viral replication was assessed by reverse transcriptase-polymerase chain reaction (RT-PCR) after treating the viral infected Vero cells with the fraction.@*RESULTS@#Reverse Phase-HPLC and GC-MS studies confirmed the presence of flavonoids, luteolin and apigenin as major phytochemicals in the anti-CHIKV ethanolic fraction of C. dactylon. The fraction was found to exhibit potent viral inhibitory activity (about 98%) at the concentration of 50 µg/mL as observed by reduction in cytopathic effect, and the cytotoxic concentration of the fraction was found to be 250 µg/mL. RT-PCR analyses indicated that the reduction in viral mRNA synthesis in fraction treated infected cells was much higher than the viral infected control cells.@*CONCLUSIONS@#Luteolin and apigenin rich ethanolic fraction from C. dactylon can be utilized as a potential therapeutic agent against CHIKV infection as the fraction does not show cytotoxicity while inhibiting the virus.

3.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-951578

RESUMO

Objective: To obtain luteolin and apigenin rich fraction from the ethanolic extract of Cynodon dactylon (L.) (C. dactylon) Pers and evaluate the fraction's cytotoxicity and anti-Chikungunya potential using Vero cells. Methods: The ethanolic extract of C. dactylon was subjected to silica gel column chromatography to obtain anti-chikungunya virus (CHIKV) fraction. Reverse phase-HPLC and GC-MS studies were carried out to identify the major phytochemicals in the fraction using phytochemical standards. Cytotoxicity and the potential of the fraction against CHIKV were evaluated in vitro using Vero cells. Reduction in viral replication was assessed by reverse transcriptase-polymerase chain reaction (RT-PCR) after treating the viral infected Vero cells with the fraction. Results: Reverse Phase-HPLC and GC-MS studies confirmed the presence of flavonoids, luteolin and apigenin as major phytochemicals in the anti-CHIKV ethanolic fraction of C. dactylon. The fraction was found to exhibit potent viral inhibitory activity (about 98%) at the concentration of 50 μg/mL as observed by reduction in cytopathic effect, and the cytotoxic concentration of the fraction was found to be 250 μg/mL. RT-PCR analyses indicated that the reduction in viral mRNA synthesis in fraction treated infected cells was much higher than the viral infected control cells. Conclusions: Luteolin and apigenin rich ethanolic fraction from C. dactylon can be utilized as a potential therapeutic agent against CHIKV infection as the fraction does not show cytotoxicity while inhibiting the virus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...