Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Commun Med (Lond) ; 4(1): 116, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871977

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR) T-cell therapy and bispecific T-cell engagers, which redirect T-cells to tumor antigens, have immensely benefitted patients with relapsed/refractory B-cell cancers. How these therapies differ in cardiotoxicity is underexplored. We used the World Health Organization pharmacovigilance database, VigiBase, to compare cardiotoxicity profiles between CD19-targeted CAR-T therapy and blinatumomab (a CD19/CD3-targeted bispecific T-cell engager). METHODS: Safety reports in VigiBase were filtered for diffuse large B-cell lymphoma (DLBCL, n = 17,479) and acute lymphocytic leukemia (ALL, n = 28,803) for all adverse reactions. Data were further filtered for patients taking CAR-T therapy or blinatumomab. Reporting odds ratios (ROR) and fatality rates were compared between CAR-T cell products (e.g. tisagenlecleucel and axicabtagene ciloleucel), and between CAR-T therapy and blinatumomab. RESULTS: Tisagenlecleucel is associated with cardiac failure (IC025 = 0.366) with fatality rates of 85.7% and 80.0% in DLBCL and pediatric ALL patients respectively. For DLBCL patients, axicabtagene ciloleucel has greater reporting for hypotension than tisagenlecleucel (ROR: 2.54; 95% CI: 1.28-5.03; p = 0.012), but tisagenlecleucel has higher fatality rates for hypotension than axicabtagene ciloleucel [50.0% (tisagenlecleucel) vs 5.6% (axicabtagene ciloleucel); p < 0.001]. Blinatumomab and tisagenlecleucel have similar fatality rates for hypotension in pediatric ALL patients [34.7% (tisagenlecleucel) vs 20.0% (blinatumomab); p = 0.66]. CONCLUSIONS: Tisagenlecleucel is associated with severe and fatal adverse cardiac events, with higher fatality rates for hypotension compared to axicabtagene ciloleucel in DLBCL patients, but similar hypotension fatality rates compared to blinatumomab in pediatric ALL patients. Effective management necessitates experienced physicians, including cardio-oncologists, skilled in interdisciplinary approaches to manage these toxicities.


Chimeric antigen receptor (CAR) T-cell therapy and blinatumomab are two new types of cancer therapies used to treat blood cancers that fail to respond to conventional chemotherapy. Our goal is to study if there are major differences in how these treatments affect the heart. We analyzed a large, global database of patients who had these treatments. We find that in a blood cancer called diffuse large B-cell lymphoma, two CAR-T cell therapies are linked to heart failure and low blood pressure. In another type of cancer, acute lymphocytic leukemia, CAR-T cell therapy is associated with heart failure and cardiac arrest. The study suggests that given the frequency and severity of these side effects, clinical care should involve an interdisciplinary team experienced in managing these serious side effects.

3.
Cardiooncology ; 9(1): 2, 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36641509

RESUMO

BACKGROUND: Cancer survivors with prior chest radiation therapy (CXRT) frequently present with atrial fibrillation, heart failure, and have higher overall long-term mortality. There are no data examining the utility of left atrial (LA) and LA appendage (LAA) volume-indices to predict clinical outcomes in these patients. OBJECTIVES: We examined the prognostic value of cardiac phase-dependent 3-D volume-rendered cardiac computerized tomography (CT)-derived LA and LAA volume-indices to predict mortality and major adverse cardiac events (MACE) in cancer survivors treated with thoracic irradiation. METHOD: We screened 625 consecutive patients with severe aortic stenosis who had undergone transcatheter aortic valve replacement from 2012 to 2017. Based on the gated cardiac CT image quality, we included 184 patients (CXRT:43, non-CXRT:141) for further analysis. We utilized multiplane-3D-reconstructed cardiac CT images to calculate LA and LAA volume-indices, and examined the prognostic role of CCT-derived LA and LAA volume-indices in predicting the all-cause mortality, cardiovascular (CV) mortality, and MACE. We used multivariate cox-proportional hazard analysis to identify the clinical predictors of survival. RESULTS: Overall, the CXRT group had significantly elevated LAA volume-index compared to non-CXRT group (CXRT:11.2 ± 8.9 ml/m2; non-CXRT:8.6 ± 4.5 ml/m2, p = 0.03). On multivariate cox-proportional hazard analysis, the elevated LAA volume and LAA volume-index were the strongest predictors of reduced survival in CXRT group compared to non-CXRT group (LAA volume: RR = 1.03,95% CI 1.0-1.01, p = 0.01; and LAA volume index: RR = 1.05, 95% CI 1.0-1.01, p = 0.03). LAA volume > 21.9 ml was associated with increased mortality. In contrast, LA volume was not a significant predictor of mortality. CONCLUSION: We describe a novel technique to assess LA and LAA volume using 3-D volume-rendered cardiac CT. This study shows enlarged LAA volume rather than LA volume carries a poor prognosis in cancer-survivors treated with prior CXRT. Compared to conventionally reported markers, LAA volume of > 21.9 ml was incremental to that of other risk factors.

4.
J Pers Med ; 12(8)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36013281

RESUMO

Background: Immune checkpoint inhibitor (ICI)-induced cardiac side effects in cancer patients are increasingly being recognized and can be fatal. There is no standardized cardiac imaging test to examine the effects of ICIs in myocardial morphology and function. Objective: To study the utility of echocardiography and cardiac MRI in examining regional and global changes arising from ICI-induced myocarditis and cardiomyopathy in high-risk subjects suspected to have developed ICI cardiomyopathy. Methods: We studied eight consecutive patients referred for cardiac MRI (CMR) from a comprehensive cancer center for suspected ICI-induced myocarditis and compared the data with sixteen age-matched controls. Using newly developed strain analysis algorithms, we measured myocardial strain and strain rates using echocardiography and CMR. Then, we compared the mean longitudinal strain and strain rates derived from echocardiography and CMR in the same ICI-treated cohort of patients (n = 8). They underwent both of these imaging studies with images taken 24−48 h apart and followed up prospectively within the same hospital course. Results: All our cases had preserved ejection fraction (EF) > 50%. Echocardiogram showed reduced mean systolic longitudinal strain (LS, %) (ICI: −12.381 ± 4.161; control: −19.761 ± 1.925; p < 0.001), peak systolic strain rate (SRS, s−1) (ICI: −0.597 ± 0.218; control: −0.947 ± 0.135; p = 0.002) and early diastolic strain rate (SRE, s−1) (ICI: 0.562 ± 0.295; control: 1.073 ± 0.228; p = 0.002) in ICI-treated cases. Direct comparison between the echocardiogram vs. CMR obtained within the same hospital course demonstrated strong a correlation of LS scores (r = 0.83, p = 0.012) and SRS scores (r = 0.71, p = 0.048). The Bland−Altman plots showed that 95% of the data points fitted within the ±1.96 SD of the mean difference, suggesting an agreement among these two imaging modalities. Conclusion: In this feasibility cohort study, both echocardiography- and CMR-based strain indices illustrate changes in myocardial contractility and relaxation suggestive of ICI-induced cardiomyopathy. Our data, after validation in a larger cohort, can form the basis of myocardial imaging in cancer patients treated with ICIs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...