Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 10(9): e0134353, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26390123

RESUMO

Following the introduction of effective protein-polysaccharide conjugate vaccines against capsular group C meningococcal disease in Europe, meningococci of capsular group B remain a major cause of death and can result in debilitating sequelae. The outer membrane proteins PorA and FetA have previously been shown to induce bactericidal antibodies in humans. Despite considerable antigenic variation among PorA and FetA OMPs in meningococci, systematic molecular epidemiological studies revealed this variation is highly structured so that a limited repertoire of antigenic types is congruent with the hyperinvasive meningococcal lineages that have caused most of the meningococcal disease in Europe in recent decades. Here we describe the development of a prototype vaccine against capsular group B meningococcal infection based on a N. meningitidis isolate genetically engineered to have constitutive expression of the outer membrane protein FetA. Deoxycholate outer membrane vesicles (dOMVs) extracted from cells cultivated in modified Frantz medium contained 21.8% PorA protein, 7.7% FetA protein and 0.03 µg LPS per µg protein (3%). The antibody response to the vaccine was tested in three mouse strains and the toxicological profile of the vaccine was tested in New Zealand white rabbits. Administration of the vaccine, MenPF-1, when given by intramuscular injection on 4 occasions over a 9 week period, was well tolerated in rabbits up to 50 µg/dose, with no evidence of systemic toxicity. These data indicated that the MenPF-1 vaccine had a toxicological profile suitable for testing in a phase I clinical trial.


Assuntos
Infecções Meningocócicas/prevenção & controle , Vacinas Meningocócicas/imunologia , Neisseria meningitidis Sorogrupo B/imunologia , Animais , Proteínas da Membrana Bacteriana Externa/imunologia , Infecções Meningocócicas/imunologia , Vacinas Meningocócicas/efeitos adversos , Coelhos
2.
Part Fibre Toxicol ; 3: 10, 2006 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-16774673

RESUMO

BACKGROUND: Particles are known to induce both cytokine release (MIP-2, TNF-alpha), a reduction in cell viability and an increased apoptosis in alveolar macrophages. To examine whether these responses are triggered by the same particle determinants, alveolar macrophages were exposed in vitro to mineral particles of different physical-chemical properties. RESULTS: The crystalline particles of the different stone types mylonite, gabbro, basalt, feldspar, quartz, hornfels and fine grain syenite porphyr (porphyr), with a relatively equal size distribution (< or = 10 microm), but different chemical/mineral composition, all induced low and relatively similar levels of apoptosis. In contrast, mylonite and gabbro induced a marked MIP-2 response compared to the other particles. For particles of smaller size, quartz (< or = 2 microm) seemed to induce a somewhat stronger apoptotic response than even smaller quartz (< or = 0.5 microm) and larger quartz (< or = 10 microm) in relation to surface area, and was more potent than hornfels and porphyr (< or = 2 microm). The reduction in cell viability induced by quartz of the different sizes was roughly similar when adjusted to surface area. With respect to cytokines, the release was more marked after exposure to quartz < or = 0.5 microm than to quartz < or = 2 microm and < or = 10 microm. Furthermore, hornfels (< or = 2 microm) was more potent than the corresponding hornfels (< or = 10 microm) and quartz (< or = 2 microm) to induce cytokine responses. Pre-treatment of hornfels and quartz particles < or = 2 microm with aluminium lactate, to diminish the surface reactivity, did significantly reduce the MIP-2 response to hornfels. In contrast, the apoptotic responses to the particles were not affected. CONCLUSION: These results indicate that different determinants of mineral/stone particles are critical for inducing cytokine responses, reduction in cell viability and apoptosis in alveolar macrophages. The data suggest that the particle surface reactivity was critical for cytokine responses, but contributed less to cell death for the types of particles tested. The size-dependent variations, specially in cytokine release, seem not to be explained only by particle surface area.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...