Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 12(2)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38399801

RESUMO

The Pangong Tso lake is a high-altitude freshwater habitat wherein the resident microbes experience unique selective pressures, i.e., high radiation, low nutrient content, desiccation, and temperature extremes. Our study attempts to analyze the diversity of culturable bacteria by applying a high-throughput amplicon sequencing approach based on long read technology to determine the spectrum of bacterial diversity supported by axenic media. The phyla Pseudomonadota, Bacteriodetes, and Actinomycetota were retrieved as the predominant taxa in both water and sediment samples. The genera Hydrogenophaga and Rheinheimera, Pseudomonas, Loktanella, Marinomonas, and Flavobacterium were abundantly present in the sediment and water samples, respectively. Low nutrient conditions supported the growth of taxa within the phyla Bacteriodetes, Actinomycetota, and Cyanobacteria and were biased towards the selection of Pseudomonas, Hydrogenophaga, Bacillus, and Enterococcus spp. Our study recommends that media formulations can be finalized after analyzing culturable diversity through a high-throughput sequencing effort to retrieve maximum species diversity targeting novel/relevant taxa.

2.
Microorganisms ; 10(12)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36557766

RESUMO

The macroalgae surface allows specific bacterial communities to colonize, resulting in complex biological interactions. In recent years, several researchers have studied the diversity and function of the epiphytic bacteria associated with algal host, but largely these interactions remain underexplored. In the present study we analysed the cultivable diversity and polymer degradation potential of epiphytic bacteria associated with five different marine macroalgae (Sargassum, Ulva, Padina, Dictyota and Pterocladia sp.) sampled from the central west coast of India. Out of the total 360 strains isolated, purified and preserved, about 238 strains were identified through 16S rRNA gene sequence analysis and processed for polymer (cellulose, pectin, xylan and starch) degrading activities. Phylogeny placed the strains within the classes Actinobacteria, Bacilli, Alpha-proteobacteria, and Gamma-proteobacteria and clustered them into 45 genera, wherein Vibrio, Bacillus, Pseudoalteromonas, Alteromonas, Staphylococcus and Kocuria spp. were the most abundant with 20 strains identified as potentially novel taxa within the genera Bacillus, Cellulosimicrobium, Gordonia, Marinomonas, Vibrio, Luteimonas and Pseudoalteromonas. In terms of polymer hydrolysis potential, 61.3% had xylanase activity, while 59.7%, 58.8%, and 52.2% had amylase, cellulase, and pectinase activity, respectively. Overall, 75.6% of the strains degraded more than one polysaccharide, 24% degraded all polymers, while nine strains (3.8%) degraded raw sugarcane bagasse. This study showed great potential for seaweed-associated bacteria in the bio-remediation of agro-waste based raw materials, which can be employed in the form of green technology.

3.
Environ Microbiol ; 24(11): 5066-5081, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36066180

RESUMO

The extracellular electron transfer (EET)-capable electroactive microorganisms (EAMs) play crucial roles in mineral cycling and interspecies electron transfer in different environments and are used as biocatalysts in microbial electrochemical technologies. Studying EAMs from extreme environments is desired to advance the electromicrobiology discipline, understanding their unique metabolic traits with implications to extreme microbiology, and develop specific bioelectrochemical applications. Here, we present a novel haloalkaliphilic bacterium named Geoalkalibacter halelectricus SAP-1, isolated from a microbial electroactive biofilm enriched from the haloalkaline lake sediments. It is a rod-shaped Gram-negative heterotrophic anaerobe that uses various carbon and energy sources and respires on soluble and insoluble terminal electron acceptors. Besides 16S-rRNA and whole-genome sequence-based phylogeny, the GGDC values of 21.7%, ANI of 78.5%, and 2.77% genomic DNA GC content difference with the closest validly named species Geoalkalibacter ferrihydriticus (DSM 17813T ) confirmed its novelty. When grown with the solid-state electrode as the only electron acceptor, it produced 460 ± 23 µA/cm2 bioelectrocatalytic current, thereby confirming its electroactivity. Further electrochemical analysis revealed the presence of membrane redox components with a high formal potential, putatively involved in the direct mode of EET. These are distinct from EET components reported for any known electroactive microorganisms, including well-studied Geobacter spp., Shewanella spp., and Desulfuromonas acetexigens. The capabilities of G. halelectricus SAP-1 to respire on soluble and insoluble electron acceptors including fumarate, SO4 2- , Fe3+ , and Mn4+ suggests its role in cycling these elements in haloalkaline environments.


Assuntos
Geobacter , Shewanella , Elétrons , Geobacter/genética , Transporte de Elétrons , Shewanella/metabolismo , Minerais/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-34550069

RESUMO

During a study of the bacterial diversity of mangrove habitats, a novel Gram-stain-negative, rod-shaped bacterium designated as SAOS 153DT was isolated. Sequence alignment and molecular phylogenetic analyses based on 16S rRNA and core gene sequence of strain SAOS 153DT with closely related taxa revealed a sequence identity of 99.4 % and clustering with Yangia pacifica DX5-10T. The fatty acids summed feature 8 (C18:1 ω7c/C18:1 ω6c) and the lipids phosphatidylglycerol, phosphatidylethanolamine and an unknown phospholipid were the major components of the cell wall. The only ubiquinone type present was Q-10. The genomic DNA G+C content of the strain calculated from whole genome sequencing was 66.9 mol%. These chemotaxonomic and genomic characteristics supported the molecular phylogenetic analysis and placed the strain well within the radiation of the genus Yangia. The overall genome related indices using digital DNA-DNA hybridization (35.4 %) and ortho-average nucleotide identity (88.1 %) values were much lower than the recommended thresholds for species delineation, which further consolidated the novel species status of strain SAOS 153DT within the genus Yangia as Yangia mangrovi sp. nov. The type strain is SAOS 153DT (=JCM 31345T=KCTC 52280T=MTCC 12749T).


Assuntos
Roseobacter , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos , Filogenia , RNA Ribossômico 16S/genética , Rhodobacteraceae , Análise de Sequência de DNA , Solo , Ubiquinona
5.
Int J Biol Macromol ; 127: 240-249, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30641192

RESUMO

An exopolysaccharide (EPS) producing bacterial strain was isolated from the surface of marine macroalgae (Padina sp.). Based on polyphasic taxonomy, the strain CDR-SL 7Cii was assigned to the genus Rhodobacter and found to be the closest relative of the species Rhodobacter johrii. The strain was able to produce 6.2 g/l of EPS upon fermentation using R2A medium enriched with 2.5% glucose. FT-IR analysis revealed the presence of hydroxyl, carboxyl and diacyl-ester functional groups in the purified EPS. Further Chromatographic study revealed that R. johrii synthesized a high molecular weight anionic exopolysaccharide composed of glucose, glucuronic acid, rhamnose and galactose in a molar ratio of 3:1.5:0.25:0.25. The 1D and 2D NMR spectroscopy (COSY/HSQC) analysis revealed the presence of 1,6 linked-α-d-Glcp, 1,4 linked-ß-d-Glcp, 1,3 linked-ß-d-GlcA, 1,3 linked-ß-d-Galp, 1,6 linked-ß-d-Galf and 3-α-l-Rhmp residues. Moreover, the purified EPS has shown stability towards elevated temperature and also acted as a bio-emulsifier to create a high pH and temperature stable emulsion of hydrocarbon/water indicating its industrial potential. This is the first report of EPS production by a strain of Rhodobacter johrii.


Assuntos
Organismos Aquáticos , Temperatura Alta , Polissacarídeos Bacterianos , Rhodobacter , Organismos Aquáticos/química , Organismos Aquáticos/metabolismo , Configuração de Carboidratos , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/isolamento & purificação , Rhodobacter/química , Rhodobacter/metabolismo
6.
Int J Syst Evol Microbiol ; 67(9): 3525-3531, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28867001

RESUMO

A novel Gram-stain-negative bacterium, strain S-MI1bT, belonging to the genus Microvirga was isolated from a metal industry waste soil sample in Pirangut village, Pune District, Maharashtra, India. Cells were non-spore-forming, small rod-shapes, motile and strictly aerobic with light-pink colonies. The strain grew in 0-7.0 % (w/v) NaCl and at 25-45 °C, with optimal growth at 40 °C. The predominant fatty acids detected were summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c) and C19 : 0 cyclo ω8c. The predominant isoprenoid quinone was Q-10. The G+C content was 67.2 mol% and DNA-DNA relatedness values between strain S-MI1bTand Microvirga subterranea DSM 14364T and Microvirgaaerophila 5420S-12T were 53.9 and 54.8 %, respectively. Phylogenetic analysis, based on 16S rRNA gene sequences, indicated that strain S-MI1bT is a member of the genus Microvirga, with greatest sequence similarities of 97.7 and 97.4 % with M. subterranea DSM 14364T and M.aerophila 5420S-12T, respectively. Phylogenetic analysis showed that strain S-MI1bT forms a clade with the type strain of M. subterranea DSM 14364T, and was readily distinguishable from it due to various phenotypic characteristics. The combination of genotypic and phenotypic data suggests that the isolate represents a novel species of the genus Microvirga, for which the name Microvirga indica sp. nov. is proposed. The type strain is S-MI1bT (=NCIM-5595T=KACC 18792T=BCRC 80972T).


Assuntos
Arsenitos/metabolismo , Resíduos Industriais , Methylobacteriaceae/classificação , Filogenia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Índia , Metais , Methylobacteriaceae/genética , Methylobacteriaceae/isolamento & purificação , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Poluentes do Solo/metabolismo , Ubiquinona/química
7.
Int J Syst Evol Microbiol ; 66(12): 5444-5451, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27707430

RESUMO

A Gram-stain-negative, rod-shaped bacterium, forming yellow colonies and designated CDR SL 15T, was isolated from the surface of Padina sp., a brown macroalga, which grows in the Western coastal regions of the state of Goa, India. The 16S rRNA gene sequence phylogeny placed the strain in the genus Luteimonas and it showed closest sequence similarity to Luteimonas terricola BZ92rT (97.6 %) and <97.0 % to other species of the genus Luteimonas. Chemotaxonomic features, such as having iso-C15 : 0 and summed feature 9 (C16 : 0 10-methyl/iso-C17 : 1ω9c) as the major fatty acids and Q-8 as the only ubiquinone further supported its placement within this genus. There were some critical differences in phenotypic properties between Luteimonas padinae sp. nov. CDR SL 15T and L. terricola DSM 22344T i.e. temperature range for growth and salinity range and optimum for growth (L. terricola is a psychrotolerant bacterium with a lower optimum temperature for growth), acid production and assimilation of substrates, enzyme activities and resistance to certain antibiotics. The DNA-DNA relatedness value of the novel strain with its closest phylogenetic relative was only 40 %, below the 70 % threshold value recommended for species delineation. All these characteristics are consistent with strain CDR SL 15T representing a novel species of the genus Luteimonas, for which the name Luteimonas padinae sp. nov. is proposed. The type strain is CDR SL 15T (=DSM 101536T=KCTC 52403T).


Assuntos
Filogenia , Alga Marinha/microbiologia , Xanthomonadaceae/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Índia , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química , Xanthomonadaceae/genética , Xanthomonadaceae/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...