Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biodegradation ; 28(4): 287-301, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28577026

RESUMO

Wastewaters generated during mining and processing of metal sulfide ores are often acidic (pH < 3) and can contain significant concentrations of nitrate, nitrite, and ammonium from nitrogen based explosives. In addition, wastewaters from sulfide ore treatment plants and tailings ponds typically contain large amounts of inorganic sulfur compounds, such as thiosulfate and tetrathionate. Release of these wastewaters can lead to environmental acidification as well as an increase in nutrients (eutrophication) and compounds that are potentially toxic to humans and animals. Waters from cyanidation plants for gold extraction will often conjointly include toxic, sulfur containing thiocyanate. More stringent regulatory limits on the release of mining wastes containing compounds such as inorganic sulfur compounds, nitrate, and thiocyanate, along the need to increase production from sulfide mineral mining calls for low cost techniques to remove these pollutants under ambient temperatures (approximately 8 °C). In this study, we used both aerobic and anaerobic continuous cultures to successfully couple inorganic sulfur compound (i.e. thiosulfate and thiocyanate) oxidation for the removal of nitrogenous compounds under neutral to acidic pH at the low temperatures typical for boreal climates. Furthermore, the development of the respective microbial communities was identified over time by DNA sequencing, and found to contain a consortium including populations aligning within Flavobacterium, Thiobacillus, and Comamonadaceae lineages. This is the first study to remediate mining waste waters by coupling autotrophic thiocyanate oxidation to nitrate reduction at low temperatures and acidic pH by means of an identified microbial community.


Assuntos
Processos Autotróficos , Temperatura Baixa , Desnitrificação , Elétrons , Tiocianatos/farmacologia , Tiossulfatos/farmacologia , Aerobiose , Anaerobiose , Processos Autotróficos/efeitos dos fármacos , Biodegradação Ambiental/efeitos dos fármacos , Reatores Biológicos/microbiologia , Desnitrificação/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Filogenia
2.
Biotechnol Bioeng ; 108(6): 1251-9, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21280027

RESUMO

Process water and effluents from mining operations treating sulfide rich ores often contain considerable concentrations of metastable inorganic sulfur compounds such as thiosulfate and tetrathionate. These species may cause environmental problems if released to downstream recipients due to oxidation to sulfuric acid catalyzed by acidophilic microorganisms. Molecular phylogenic analysis of the tailings pond and recipient streams identified psychrotolerant and mesophilic inorganic sulfur compound oxidizing microorganisms. This suggested year round thiosalt oxidation occurs. Mining process waters may also contain inhibiting substances such as thiocyanate from cyanidation plants. However, toxicity experiments suggested their expected concentrations would not inhibit thiosalt oxidation by Acidithiobacillus ferrivorans SS3. A mixed culture from a permanently cold (4-6 °C) low pH environment was tested for thiosalt removal in a reactor design including a biogenerator and a main reactor containing a biofilm carrier. The biogenerator and main reactors were successively reduced in temperature to 5-6 °C when 43.8% of the chemical oxidation demand was removed. However, it was found that the oxidation of thiosulfate was not fully completed to sulfate since low residual concentrations of tetrathionate and trithionate were found in the discharge. This study has demonstrated the potential of using biotechnological solutions to remove inorganic sulfur compounds at 6°C and thus, reduce the impact of mining on the environment.


Assuntos
Acidithiobacillus/metabolismo , Compostos de Enxofre/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Acidithiobacillus/genética , Mineração , Oxirredução , Filogenia , Compostos de Enxofre/metabolismo , Tiossulfatos/isolamento & purificação , Tiossulfatos/metabolismo , Poluentes Químicos da Água/metabolismo
3.
Biotechnol Bioeng ; 106(3): 422-31, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20198654

RESUMO

Biomining is the use of microorganisms to catalyze metal extraction from sulfide ores. However, the available water in some biomining environments has high chloride concentrations and therefore, chloride toxicity to ferrous oxidizing microorganisms has been investigated. Batch biooxidation of Fe(2+) by a Leptospirillum ferriphilum-dominated culture was completely inhibited by 12 g L(-1) chloride. In addition, the effects of chloride on oxidation kinetics in a Fe(2+) limited chemostat were studied. Results from the chemostat modeling suggest that the chloride toxicity was attributed to affects on the Fe(2+) oxidation system, pH homeostasis, and lowering of the proton motive force. Modeling showed a decrease in the maximum specific growth rate (micro(max)) and an increase in the substrate constant (K(s)) with increasing chloride concentrations, indicating an effect on the Fe(2+) oxidation system. The model proposes a lowered maintenance activity when the media was fed with 2-3 g L(-1) chloride with a concomitant drastic decrease in the true yield (Y(true)). This model helps to understand the influence of chloride on Fe(2+) biooxidation kinetics.


Assuntos
Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Cloretos/metabolismo , Cloretos/toxicidade , Compostos Ferrosos/metabolismo , Bactérias/crescimento & desenvolvimento , Oxirredução
4.
J Hazard Mater ; 172(2-3): 1273-81, 2009 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-19720455

RESUMO

Bioleaching operations in areas with limited chloride-free water and use of ashes and dust as neutralizing agents have motivated to study the chloride toxicity and tolerance level of the microorganisms. Biooxidation of pyrite using chloride containing waste ash compared with Ca(OH)(2)+NaCl as neutralizing agent was investigated to evaluate the causes of low pyrite oxidation. Both precipitation of jarosite as well as the toxic effect of chloride on the microorganisms were responsible for lower pyrite recoveries. Another study with sudden exposure of chloride during pyrite biooxidation, addition of 4 g/L was lethal for the microorganisms. Addition of 2g/L chloride resulted in precipitation of jarosite with slightly lower pyrite recovery whereas the addition of 3g/L chloride temporarily chocked the microorganisms but activity was regained after a short period of adaptation. Population dynamics study conducted on the experiment with 3g/L chloride surprisingly showed that Leptospirillum ferriphilum, which was dominating in the inoculum, completely disappeared from the culture already before chloride was added. Sulphobacillus sp. was responsible for iron oxidation in the experiment. Both Acidithiobacillus caldus and Sulphobacillus sp. were adaptive and robust in nature and their numbers were slightly affected after chloride addition. Therefore, it was concluded that the microbial species involved in the biooxidation of pyrite vary in population during the different stages of biooxidation.


Assuntos
Bactérias/metabolismo , Biodegradação Ambiental , Cloretos/toxicidade , Ferro/metabolismo , Sulfetos/metabolismo , Acidithiobacillus , Carbono , Cinza de Carvão , Oxirredução , Material Particulado
5.
Biotechnol Bioeng ; 99(4): 811-20, 2008 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17705245

RESUMO

Silicate minerals are present in association with metal sulfides in ores and their dissolution occurs when the sulfide minerals are bioleached in heaps for metal recovery. It has previously been suggested that silicate mineral dissolution can affect mineral bioleaching by acid consumption, release of trace elements, and increasing the viscosity of the leach solution. In this study, the effect of silicates present in three separate samples in conjunction with chalcopyrite and a complex multi-metal sulfide ore on heap bioleaching was evaluated in column bioreactors. Fe(2+) oxidation was inhibited in columns containing chalcopyrite samples A and C that leached 1.79 and 1.11 mM fluoride, respectively but not in sample B that contained 0.14 mM fluoride. Microbial Fe(2+) oxidation inhibition experiments containing elevated fluoride concentrations and measurements of fluoride release from the chalcopyrite ores supported that inhibition of Fe(2+) oxidation during column leaching of two of the chalcopyrite ores was due to fluoride toxicity. Column bioleaching of the complex sulfide ore was carried out at various temperatures (7-50 degrees C) and pH values (1.5-3.0). Column leaching at pH 1.5 and 2.0 resulted in increased acid consumption rates and silicate dissolution such that it became difficult to filter the leach solutions and for the leach liquor to percolate through the column. However, column temperature (at pH 2.5) only had a minor effect on the acid consumption and silicate dissolution rates. This study demonstrates the potential negative impact of silicate mineral dissolution on heap bioleaching by microbial inhibition and liquid flow.


Assuntos
Reatores Biológicos/microbiologia , Minerais/química , Minerais/metabolismo , Silicatos/química , Silicatos/metabolismo , Microbiologia do Solo , Solo/análise
6.
Biotechnol Bioeng ; 99(2): 378-89, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17615557

RESUMO

The objective of this study was to evaluate a direct classical bioengineering approach to model data generated from continuous bio-oxidation of Fe(2+) by a Leptospirillum ferrooxidans-dominated culture fed with either 9 g or 18 g Fe(2+) L(-1) under chemostat conditions (dilution rates were between 0.051 and 0.094 h(-1)). The basic Monod and Pirt equations have successfully been integrated in an overall mass balance procedure, which has not been previously presented in this detail for Fe(2+) oxidation. To ensure chemostat conditions, it was found that the range of the dilution rates had to be limited. A too long retention time might cause starvation or non-negligible death rate whereas, a too short retention time may cause a significant alteration in solution chemistry and culture composition. Modeling of the experimental data suggested that the kinetic- and yield parameters changed with the overall solution composition. However, for respective feed solutions only minor changes of ionic strength and chemical speciation can be expected within the studied range of dilution rates, which was confirmed by thermodynamic calculations and conductivity measurements. The presented model also suggests that the apparent Fe(3+) inhibition on specific Fe(2+) utilization rate was a direct consequence of the declining biomass yield on Fe(2+) due to growth uncoupled Fe(2+) oxidation when the dilution rate was decreased. The model suggested that the maintenance activities contributed up to 90% of the maximum specific Fe(2+) utilization rate, which appears close to the critical dilution rate. Biotechnol. Bioeng. 2008;99: 378-389. (c) 2007 Wiley Periodicals, Inc.


Assuntos
Bactérias Aeróbias/metabolismo , Ferro/metabolismo , Modelos Biológicos , Reatores Biológicos/microbiologia , Água Doce/microbiologia , Cinética , Oxirredução , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...