Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 15(5)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38793133

RESUMO

Wafer-scale blue micro-light-emitting diode (micro-LED) arrays were fabricated with a pixel size of 12 µm, a pixel pitch of 15 µm, and a pixel density of 1692 pixels per inch, achieved by optimizing the properties of e-beam-deposited and sputter-deposited indium tin oxide (ITO). Although the sputter-deposited ITO (S-ITO) films exhibited a densely packed morphology and lower resistivity compared to the e-beam-deposited ITO (E-ITO) films, the forward voltage (VF) values of a micro-LED with the S-ITO films were higher than those with the E-ITO films. The VF values for a single pixel and for four pixels with E-ITO films were 2.82 V and 2.83 V, respectively, while the corresponding values for S-ITO films were 3.50 V and 3.52 V. This was attributed to ion bombardment damage and nitrogen vacancies in the p-GaN layer. Surprisingly, the VF variations of a single pixel and of four pixels with the optimized E-ITO spreading layer from five different regions were only 0.09 V and 0.10 V, respectively. This extremely uniform VF variation is suitable for creating micro-LED displays to be used in AR and VR applications, circumventing the bottleneck in the development of long-lifespan and high-brightness organic LED devices for industrial mass production.

2.
Sci Rep ; 7(1): 3915, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28634385

RESUMO

This study presents a detailed fabrication method, together with validation, discussion, and analysis, for state-of-the-art silicon carbide (SiC) etching of vertical and bevelled structures by using inductively coupled plasma reactive ion etching (ICP-RIE) for microelectronic applications. Applying different gas mixtures, a maximum bevel angle of 87° (almost vertical), large-angle bevels ranging from 40° to 80°, and small-angel bevels ranging from 7° to 17° were achieved separately using distinct gas mixtures at different ratios. We found that SF6 with additive O2 was effective for vertical etching, with a best etching rate of 3050 Å/min. As for the large-angle bevel structures, BCl3 + N2 gas mixtures show better characteristics, exhibiting a controllable and large etching angle range from 40° to 80° through the adjustment of the mixture ratio. Additionally, a Cl2 + O2 mixture at different ratios is applied to achieve a small-angel bevels ranging from 7° to 17°. A minimum bevel angel of approximately 7° was achieved under the specific volume of 2.4 sccm Cl2 and 3.6 sccm O2. These results can be used to improve performance in various microelectronic applications including MMIC via holes, PIN diodes, Schottky diodes, JFETs' bevel mesa, and avalanche photodiode fabrication.

3.
J Nanosci Nanotechnol ; 17(4): 2582-584, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29658691

RESUMO

We report an implantable neural probe with monolithically integrated light-emitting diodes (LEDs) and recording site for optogenetic applications. The device were designed and fabricated with 2-inch gallium nitride on silicon epitaxial wafer. The neural probe consisted of three µLEDs (a mesa size of 310 × 41 mm2) and four electrical recording sites, which had a total length of 6.72 mm (PCB bonding region + implanting region). The designed implantable neural probe was successfully processed by the conventional LED fabrication and Si microfabrcation. These methods can offer relatively rapid and easy fabrication. For fabricated µLEDs, the optical and electrical properties were measured and characterized. At 1 mA, the emission wavelength was around 460 nm and it was slightly blue-shifted with the increase of injection current. Also, the optical power density was about 1 mW/mm2 at an electrical input power of 3.5 mW, and it was increased to 6.3 mW/mm2 at 24 mW.

4.
Nanoscale ; 7(48): 20717-24, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26601993

RESUMO

A novel technique for the selective photochemical synthesis of silver (Ag) nanoparticles (NPs) on ZnO nanorod arrays is established by combining ultraviolet-assisted nanoimprint lithography (UV-NIL) for the definition of growth sites, hydrothermal reaction for the position-controlled growth of ZnO nanorods, and photochemical reduction for the decoration of Ag NPs on the ZnO nanorods. During photochemical reduction, the size distribution and loading of Ag NPs on ZnO nanorods can be tuned by varying the UV-irradiation time. The photochemical reduction is hypothesized to facilitate the adsorbed citrate ions on the surface of ZnO, allowing Ag ions to preferentially form Ag NPs on ZnO nanorods. The ratio of visible emission to ultraviolet (UV) emission for the Ag NP-decorated ZnO nanorod arrays, synthesized for 30 min, is 20.5 times that for the ZnO nanorod arrays without Ag NPs. The enhancement of the visible emission is believed to associate with the surface plasmon (SP) effect of Ag NPs. The Ag NP-decorated ZnO nanorod arrays show significant SP-induced enhancement of yellow-green light emission, which could be useful in optoelectronic applications. The technique developed here requires low processing temperatures (120 °C and lower) and no high-vacuum deposition tools, suitable for applications such as flexible electronics.

5.
Opt Express ; 22 Suppl 3: A723-34, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24922380

RESUMO

A new approach to surface roughening was established and optimized in this paper for enhancing the light extraction of high power AlGaInP-based LEDs, by combining ultraviolet (UV) assisted imprinting with dry etching techniques. In this approach, hexagonal arrays of cone-shaped etch pits are fabricated on the surface of LEDs, forming gradient effective-refractive-index that can mitigate the emission loss due to total internal reflection and therefore increase the light extraction efficiency. For comparison, wafer-scale FLAT-LEDs without any surface roughening, WET-LEDs with surface roughened by wet etching, and DRY-LEDs with surface roughened by varying the dry etching time of the AlGaInP layer, were fabricated and characterized. The average output power for wafer-scale FLAT-LEDs, WET-LEDs, and DRY3-LEDs (optimal) at 350 mA was found to be 102, 140, and 172 mW, respectively, and there was no noticeable electrical degradation with the WET-LEDs and DRY-LEDs. The light output was increased by 37.3% with wet etching, and 68.6% with dry etching surface roughening, respectively, without compromising the electrical performance of LEDs. A total number of 1600 LED chips were tested for each type of LEDs. The yield of chips with an optical output power of 120 mW and above was 0.3% (4 chips), 42.8% (684 chips), and 90.1% (1441 chips) for FLAT-LEDs, WET-LEDs, and DRY3-LEDs, respectively. The dry etching surface roughening approach developed here is potentially useful for the industrial mass production of wafer-scale high power LEDs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...